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SIDNEY K. D’MELLO, University of Notre Dame 3
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Affect detection is an important pattern recognition problem that has inspired researchers from several areas. 5
The field is in need of a systematic review due to the recent influx of Multimodal (MM) affect detection systems 6
that differ in several respects and sometimes yield incompatible results. This article provides such a survey 7
via a quantitative review and meta-analysis of 90 peer-reviewed MM systems. The review indicated that the 8
state of the art mainly consists of person-dependent models (62.2% of systems) that fuse audio and visual 9
(55.6%) information to detect acted (52.2%) expressions of basic emotions and simple dimensions of arousal 10
and valence (64.5%) with feature- (38.9%) and decision-level (35.6%) fusion techniques. However, there 11
were also person-independent systems that considered additional modalities to detect nonbasic emotions 12
and complex dimensions using model-level fusion techniques. The meta-analysis revealed that MM systems 13
were consistently (85% of systems) more accurate than their best unimodal counterparts, with an average 14
improvement of 9.83% (median of 6.60%). However, improvements were three times lower when systems 15
were trained on natural (4.59%) versus acted data (12.7%). Importantly, MM accuracy could be accurately 16
predicted (cross-validated R2 of 0.803) from unimodal accuracies and two system-level factors. Theoretical 17
and applied implications and recommendations are discussed. 18
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1. INTRODUCTION 27

Affect detection (or affect recognition or affect classification) is an emerging research 28
area of considerable practical and theoretical interest to a number of fields includ- 29
ing signal processing, machine learning, computational linguistics, computer vision, 30
neuroscience, and cognitive and social psychology [Picard 2010]. From a practical 31
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standpoint, affect detection is a cornerstone of affect-aware interfaces that aim to auto-32
matically detect and intelligently respond to users’ affective states in order to increase33
usability and effectiveness [Brave and Nass 2002; Picard 1997]. From a theoretical34
standpoint, affect detection is ultimately a signal processing and pattern recognition35
problem because it involves the development of a classifier or regressor to detect an36
ill-defined phenomenon (affect) from observable signals. The problem is extremely chal-37
lenging because affective states are psychological constructs (conceptual variables) that38
are not directly observable and are embedded in a noisy context-sensitive expressive39
and communicative system that has been fine-tuned over millions of years. The chal-40
lenge is to detect an elusive and fleeting signal (affect) embedded in a system with41
multiple sources of noise exacerbated by context sensitivity, social masking, and in-42
dividual and cultural variability [Elfenbein and Ambady 2002; Russell 1994; Russell43
et al. 2003].44

The aforementioned complexities make affect detection an interesting and worth-45
while problem to pursue as witnessed by numerous efforts toward detecting affective46
states from a variety of modalities, such as facial expressions, acoustic-prosodic cues,47
body movements, gesture, contextual cues, text and discourse, physiology, and neural48
circuitry (see Calvo and D’Mello [2010], Pantic and Rothkrantz [2003], and Zeng et al.49
[2009] for reviews). While early affect detection systems focused primarily on individ-50
ual modalities and on emotional expressions portrayed by actors, many contemporary51
systems emphasize Multimodal (MM) detection of naturalistic affective expressions52
[Zeng et al. 2009], which is a novel problem in its own right.53

Despite the impressive progress made so far, it is safe to say that there is still con-54
siderable ground to be covered before affect detectors can be integrated into everyday55
interfaces and devices and can be more readily deployed into real-world contexts. The56
field is still confronted with a number of persistent problems, such as (a) intrusive,57
expensive, and noisy sensors, some of which have scalability concerns; (b) technical58
challenges associated with detecting latent psychological constructs (i.e., affect) from59
weak signals embedded in noisy channels; (c) difficulties associated with collecting60
adequate realistic training data for machine learning [Douglas-Cowie et al. 2007];61
(d) the persistent problem of obtaining ground truth labels for supervised classification,62
when interobserver agreement is generally low [Afzal and Robinson 2011; Graesser63
et al. 2006]; (e) challenges of incorporating top-down models of context with bottom-up64
body-based sensing [Conati and Maclaren 2009]; (f) issues of generalizability across65
contexts, time, individuals, and cultures [Calvo and D’Mello 2010]; (g) lack of clarity66
of the affective phenomenon being modeled (e.g., moods vs. emotions, categorical vs.67
dimensional representations, partly due to a difficulty in defining affect [Izard 2010]);68
and (g) many others as articulated in previous reviews [Calvo and D’Mello 2010; Pantic69
and Rothkrantz 2003; Zeng et al. 2009].70

As researchers are well aware, this daunting list of challenges and open problems71
is more the norm than the exception given the difficulty of affect detection and the72
relative infancy of the field (about 15 years old). Numerous innovative solutions to73
address some of the aforementioned challenges have been extensively reviewed in both74
early (prior to 2009—see Cowie et al. [2001], Jaimes and Sebe [2007], Pang and Lee75
[2008], and Pantic and Rothkrantz [2003]) and more recent surveys (2009 to present—76
see Calvo and D’Mello [2010], D’Mello and Kory [2012], Valstar et al. [2012], and Zeng77
et al. [2009]), and will not be repeated here. Instead, the present focus is on MM78
affect detection, a strategy that is gaining momentum because it is expected to yield79
several advantages over unimodal (UM) affect detection. The remainder of the section80
briefly introduces the area of MM affect detection along with an overview of the issues81
addressed in this article.82
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1.1. MM Affect Detection 83

While UM detection involves the use of a single modality (e.g., facial features, ges- 84
tures), MM systems fuse two or more modalities for affect detection. This raises a 85
number of unique challenges and opportunities. The main challenges include (a) decid- 86
ing which modalities to combine; (b) collecting MM training data; (c) handling missing 87
data, different sampling rates, and modality interdependence when building models; 88
(d) deciding how to fuse data from different modalities; and (e) deciding how to evaluate 89
MM affect detectors. The hypothesized advantages of MM approaches to affect detec- 90
tion include (a) a higher-fidelity model of human affective expression, (b) a potential 91
solution to address missing data caused by UM sensors, and (c) a solution to the noisy 92
channel problem that plagues UM approaches. 93

With respect to the first advantage, it is widely acknowledged that human affec- 94
tive expression consists of a complex coordination of signals encompassing mostly in- 95
voluntary (e.g., physiology), semivoluntary (facial expressions, body movements), and 96
voluntary (e.g., overt actions such as key presses) responses [Ekman 1992; Rosenberg 97
and Ekman 1994]. Analyzing multiple signals and their mutual interdependence is 98
expected to yield models that more accurately reflect the underlying nature of human 99
affective expression. 100

Second, UM signals suffer from notable problems associated with missing data. 101
For example, a speech-based affect detector is virtually useless when the user is not 102
speaking, while facial expressions cannot be reliably tracked when the face is out of view 103
or occluded. MM approaches can provide more continuous affect detection capabilities 104
by basing their decisions on the available channels. 105

The third hypothesized advantage of MM systems stems from the fact that UM af- 106
fect detectors are inherently noisy since the link between specific signals and affective 107
states is tenuous at best [Barrett et al. 2007; Russell et al. 2003]. This is partially 108
the case because there is no one-to-one mapping between an expression and an affec- 109
tive state. For example, a furrowed brow caused by squinting to focus at something in 110
the distance is diagnostic of a different cognitive state (information seeking) than a fur- 111
rowed brow that accompanies an expression of confusion [D’Mello and Graesser 2014]. 112
Furthermore, the same affective state can be differentially expressed as a function of 113
the underlying eliciting stimulus. For example, a nearby spider (about to strike) and a 114
spider across the room elicit different responses because they require different actions 115
even though the underlying affective state (fear) elicited by both situations might be the 116
same [Coan 2010]. In general, there is a loose coupling between observable expressions 117
and specific affective states; hence, UM affect detectors are expected to yield moderate 118
accuracies as best. MM affect detectors should yield improvements over UM systems 119
because they are more suited to modeling the weak coupling between expression and 120
experience of affect. 121

1.2. Goals and Overview of the Present Article 122

It is generally expected that incorporating MM signals should yield improvements in 123
affect detection accuracies over UM signals. Although this assumption has obvious 124
face validity, it has not always been supported. For example, when compared to the 125
accuracies obtained by the best UM classifiers, some studies have reported impressive 126
MM improvements (e.g., Jiang et al. [2011], Kessous et al. [2010], Lin et al. [2012], 127
Paleari et al. [2009], and Wöllmer et al. [2010]), others have reported negligible or null 128
improvements (e.g., Emerich et al. [2009], Kim [2007], and Metallinou et al. [2012]), 129
and some have even reported negative effects (e.g., Glodek et al. [2011], Gunes and 130
Piccardi [2005], and Khalali and Moradi [2009]). The considerable interstudy variance 131
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in the results of MM affect detection makes it difficult to appropriately gauge what132
advantages (if any) MM detection yields over UM detection. In addition, there is the133
question of whether situations can be identified where MM detectors yield impressive134
improvements, and whether these situations can be differentiated from those that re-135
sult in null or negative effects. The present article attempts to address these questions136
by analyzing 90 MM and UM affect detection accuracies reported in published studies.137

Research Questions. We focus on answering three specific research questions pertain-138
ing to state-of-the-art MM affect detection systems. First, what are the major trends139
in contemporary MM affect detectors? More specifically, can any general conclusions140
be drawn with respect to the various components (called system-level factors) of MM141
affect detection systems (e.g., type of training data, modality fusion methods, affect142
representation models)? Second, what is the added improvement (if any) in MM over143
the best UM detection accuracy (called MM1 effect size or MM1 effects)? Third, can we144
identify system-level factors that correlate with MM1 effects and can they be used to145
predict MM accuracies in a manner that generalizes across our sample of 90 studies146
(called moderation analyses)?147

Preliminary Analyses. We have made an initial attempt to answer some of these ques-148
tions (specifically the second and partially the first and third questions) by performing149
a preliminary analysis of 30 published MM affect detectors [D’Mello and Kory 2012].150
The results of this initial analysis indicated that MM accuracies were consistently (26151
out of 30 studies) better than UM accuracies, and on average, yielded an 8.12% im-152
provement over the best UM detectors. The present article substantially expands on153
this initial study, both in terms of distributive breadth (the number of studies analyzed)154
and analysis depth (the types of questions that can be answered with a larger sample155
of studies).156

Focus of Current Analyses. The focus of this article is on quantifying study-level157
factors and statistically analyzing MM accuracies rather than qualitatively describing158
individual affect detection systems; the latter has been extensively done in previous159
surveys, although mainly on UM and/or audio-visual detection (see Calvo and D’Mello160
[2010], Jaimes and Sebe [2007], Pantic and Rothkrantz [2003], and Zeng et al. [2009]).161
Hence, we do not discuss individual systems and approaches in depth, but focus on162
identifying general trends across systems with descriptive statistics and analyzing163
MM accuracies and effects with both descriptive and inferential statistics.164

It is sometimes argued that meta-analyses of this type are not feasible because it is165
improper to compare accuracies across studies that differ in multiple respects. Hence,166
it is important to emphasize that the present article does not make such comparisons.167
Instead, MM1 effects are computed by comparing MM accuracies to UM accuracies168
from the same study, a comparison that is justifiable because study-level factors are169
held constant. The distribution of MM1 effects from individual studies is then statis-170
tically analyzed, an approach recommended by standard texts on meta-analyses (e.g.,171
Borenstein et al. [2009] and Lipsey and Wilson [2001]). In addition, the variability in172
datasets, methods, and metrics used is, in fact, a major strength of meta-analytical ap-173
proaches because it allows one to estimate “population effects” from individual “study174
effects” by averaging across interstudy variability.175

To summarize, with the exception of our preliminary study [D’Mello and Kory 2012],176
this article represents the first major attempt to quantify and statistically analyze a177
large set of MM affect detectors in order to make generalizable conclusions.178

2. METHOD179

The methodology used to search for relevant articles, the inclusion/exclusion criteria,180
the data coding, and data treatment procedures are discussed in some detail in this181
section to enable replication as more studies emerge in the literature.182
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2.1. Search Process and Inclusion/Exclusion Criteria 183

A three-pronged approach was used for study selection. First, relevant journals and 184
conference proceedings were searched using a targeted search strategy. The journals in- 185
cluded IEEE Transactions on Affective Computing, IEEE Transactions on Multimedia, 186
and IEEE Transactions on Pattern Analysis and Machine Intelligence. Conferences 187
included the International Conference on Affective Computing and Intelligent Inter- 188
action (ACII), IEEE International Conference on Automatic Face and Gesture Recog- 189
nition (FG), IEEE International Conference on Multimedia and Expo (ICME), ACM 190
International Conference on Multimodal Interfaces (ICMI), and INTERSPEECH. The 191
secondary search commenced by identifying additional articles from the reference sec- 192
tions of articles retrieved from the targeted search and from recent survey articles 193
[Calvo and D’Mello 2010; Zeng et al. 2009]. Finally, the informal search proceeded by 194
querying Google Scholar with the following search queries: (multimodal OR bimodal) 195
fusion; (affect OR emotion) AND (detection OR recognition). We restricted our targeted 196
search to articles published within the last 5 years (2009–2013), but earlier articles 197
could have been retrieved in the secondary and informal searches as long as they were 198
published in the last 10 years (2003 and beyond). 199

A rather liberal inclusion/exclusion criterion was adopted in order to maximize the 200
number of studies considered. Any peer-reviewed publication that reported both UM 201
and MM affect detection accuracies in a clearly accessible format (i.e., accuracy metrics 202
could be easily obtained from the text, tables, or figures) was included in the analysis. 203
Failure to report both UM and MM accuracies unfortunately led to the exclusion of some 204
relevant and highly cited studies (e.g., Kapoor et al. [2007]), but this was unavoidable 205
due to the nature of the analytic strategy. Selection bias was avoided by never excluding 206
a study based on the results, publication outlet, or authors. 207

In all, 84 articles were selected based on the search and inclusion/exclusion criteria. 208
These 84 articles yielded 90 viable systems since some articles reported more than one 209
unique multimodal affect detector. There was a strong positive correlation between 210
the year (2004–2013) and the number of studies, r = 0.727, suggesting that recent 211
studies were more frequent in the sample. More than 60% of the studies were from the 212
2009–2013 period and 42% of all studies were from the 2011–2013 period. 213

2.2. Data Coding 214

The studies were coded along several system-level (or study-level) factors. The coding 215
process was initially performed by one of the authors and then independently checked 216
by the second author. Disagreements were resolved via discussion among the authors. 217
Table I describes how each study was coded with respect to the factors discussed in the 218
following. 219

Data type addresses whether training and validation data consisted of affective ex- 220
pressions that were (a) obtained by asking actors to portray various emotions (e.g., 221
Castellano et al. [2008], Cueva et al. [2011], Dobrišek et al. [2013], Lingenfelser et al. 222
[2011], and Metallinou et al. [2012]), (b) collected via experimental methods that in- 223
duced specific emotions (e.g., Bailenson et al. [2008], Glodek et al. [2013], Koelstra 224
et al. [2012], Soleymani et al. [2012], and Wöllmer et al. [2013a]), or (c) naturalistic 225
displays of affect (i.e., nonacted and not induced—e.g., Castellano et al. [2009], D’Mello 226
and Graesser [2010], Kapoor and Picard [2005], Litman and Forbes-Riley [2004], and 227
Wöllmer et al. [2013b]). 228

While the criteria for a dataset to be categorized as acted or natural is quite clear, the 229
induced category requires some clarification. This designation was applied to datasets 230
where specific emotions were induced using well-established techniques such as show- 231
ing participants films (e.g., Soleymani et al. [2012]) or images (e.g., Hussain et al. 232
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[2012]) that were previously validated as being reliable elicitors of affect [Kory and233
D’Mello 2014]. It was also applied to studies where individuals were required to par-234
ticipate in interactions that were intentionally affectively charged, thereby increas-235
ing the likelihood that they would respond emotionally. For example, the SEMAINE236
dataset [McKeown et al. 2012] was constructed by asking individuals to engage in a237
conversation with an animated agent that had one of four affective dispositions (or238
personalities): angry, happy, gloomy, or pragmatic. Studies that utilized this dataset239
(e.g., Karpouzis et al. [2007] and Nicolaou et al. [2011]) were categorized as “induced”240
because it is likely that the affective disposition of the agent induced specific emotions241
in the individual. In fact, this was the main motivation toward using agents with four242
specific affective dispositions.243

Number of participants simply refers to the number of unique individuals in the244
training/validation dataset. It is an important factor because generalizability is related245
to the number of individuals used to train the detector due to individual differences in246
affect expression.247

Affect representation model refers to whether ground truth affect measures for the248
supervised classifiers consisted of discrete or dimensional representations. Discrete249
models consider emotional episodes as belonging to one of m distinct categories (e.g.,250
judging if a 30 second video of an individual’s face represents anger, sadness, or fear).251
Discrete ratings do not need to be mutually exclusive since affective blends are often252
experienced, yet most studies use mutually exclusive ratings for convenience (e.g.,253
D’Mello and Graesser [2010], Krell et al. [2013], and Rashid et al. [2012]). Dimensional254
models represent affect along one or more dimensions, primarily valence (positive-255
negative) and activation/arousal (sleepy vs. awake or inactive vs. active) (e.g., Hussain256
et al. [2012], Lu and Jia [2012], and Wang et al. [2013]), but occasionally extending to257
other dimensions such as expectancy, power, and dominance (e.g., Baltrušaitis et al.258
[2013], Glodek et al. [2013], and Wöllmer et al. [2013a]).259

The affect representation model is a conceptual entity that is concerned with the260
affective representation and not with the measurement scale per se. Hence, studies261
involving ordinal or continuous ratings of discrete emotions were coded as discrete,262
as was the case where the intensity of amusement (a discrete state) was rated via a263
0 (neutral) to 8 (amused) scale (e.g., Bailenson et al. [2008]). Similarly, studies with264
categorical ratings of dimensions (e.g., low vs. high ratings of valence) were coded as265
dimensional (e.g., Bailenson et al. [2008]).266

Affect detection model pertains to whether the machine learning models were clas-267
sifiers or regressors. In most cases, classifiers and regressors were used when affect268
models were discrete (e.g., D’Mello and Graesser [2010], Hommel et al. [2013], and269
Rashid et al. [2012]) and continuous (e.g., Eyben et al. [2011], Kanluan et al. [2008],270
and Savran et al. [2012]), respectively. However, a number of studies used dimensional271
representations and collected ordinal or continuous ratings, but performed classifica-272
tions instead of regressions by discretizing the scales into high versus low or high versus273
medium versus low categories (e.g., Glodek et al. [2011] and Wöllmer et al. [2013a]).274
For example, Wöllmer et al. [2010] used a five-point scale to measure valence and275
activation, but then performed a categorical classification by performing a tripartite276
split on each dimension (i.e., dividing the scale into low, medium, and high sections).277
Similarly, ordinal or continuous activation-valence values were often discretized by278
clustering prior to classification (e.g., Karpouzis et al. [2007]).279

Number of affective states detected only applies to classification tasks and is sim-280
ply the number of discrete affective states considered. It is an important factor as281
the affect detection problem ostensibly becomes more challenging as the number of282
discriminations increases.283
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Affective states/dimensions detected pertains to the specific affective states/ 284
dimensions in the classification/regression models. Researchers in the affective sci- 285
ences have proposed a number of taxonomies to categorize the discrete affective states 286
that occur in everyday experiences [Ekman 1992; Ortony et al. 1988; Plutchik 2001]. 287
Broadly, the affective states can be divided into discrete basic and discrete nonbasic 288
states. States such as anger, surprise, happiness, disgust, sadness, and fear are typ- 289
ically considered to be basic affective states [Ekman 1992]. States such as boredom, 290
confusion, frustration, engagement, and curiosity share some, but not all, of the fea- 291
tures commonly attributed to basic emotions (see Ekman [1992]). Consequently, these 292
are labeled as nonbasic states. Some studies used a combination of both (e.g., Castellano 293
et al. 2008; Sebe et al. 2006] and these were coded as discrete mixed. 294

With respect to affective dimensions, most researchers agree that valence and arousal 295
(activation) are two essential dimensions to represent affect [Barrett et al. 2007; Russell 296
2003]. Beyond this, there is considerable debate as to which other dimensions are 297
needed [Fontaine et al. 2007; Kaernbach 2011]. Most studies detected valence and 298
arousal (coded as dimensional simple), but expectancy, power, and dominance were 299
also considered in some studies (coded as dimensional complex). 300

Number of modalities simply refers to whether the MM detectors fused two (bimodal) 301
or three (trimodal) modalities. 302

Modalities refer to the specific modalities used for affect detection. In communication 303
theory, modality is considered to be distinct from medium because the former focuses 304
on the sense via which a message is communicated (e.g., facial expression, pitch), 305
while the latter is concerned with the means of message communication [Sutdiffe 306
2008]. For example, facial expressions and gestures are different modalities that can 307
be communicated via the same medium (video). The present coding scheme focused on 308
modality instead of medium. 309

The specific modalities used in the 90 studies included (a) facial features extracted 310
from video, (b) paralinguistic or acoustic-prosodic features from the voice, (c) linguistic 311
or semantic features from written or spoken language, (d) body movements consisting 312
of postures and gestures (excluding facial features), (e) eye gaze, (f) central physiology 313
(only Electroencephalography—EEG), (g) peripheral physiology (e.g., Electrodermal 314
activity (EDR), Electrocardiography (ECG), Electromyography (EMG), respiration), 315
and (h) content and context. 316

While modalities (a)–(f) were straightforward, peripheral physiology and con- 317
tent/context require some clarification. With respect to peripheral physiology, although 318
individual channels, such as EDR, ECG, EMG, and so forth, can be analyzed inde- 319
pendently and treated as separate modalities, most studies fused features from these 320
various channels instead of considering each signal individually. For example, Chanel 321
et al. [2011] built (a) a peripheral model by combining galvanic skin response, blood 322
volume pulse, heart rate, chest cavity expansion, and skin temperature; (b) a central 323
physiology model (EEG); and (c) a combined peripheral + central physiology model. 324
In this and similar cases, the combination of the individual peripheral physiological 325
channels was taken as a UM detector. 326

Content features were gleaned from a multimedia content analysis of affect- 327
elicitation stimuli (e.g., low-level video features such as color, lighting [Koelstra et al. 328
2012]). Context features were obtained by analyzing the situation in which the affec- 329
tive interaction was embedded. For example, D’Mello and Graesser [2010] tracked a 330
number of contextual cues, such as session length, system feedback, and so on, when 331
individuals completed a learning session with a computer tutor. Both content and con- 332
text features are unique from the other modalities in that they are obtained from the 333
stimuli and situation rather than the individuals themselves. They were grouped as 334
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context/context features since there were not a sufficient number of studies to sustain335
an independent analysis of each.336

Fusion method pertains to the method used to fuse modalities. Possible options337
include data-level, decision-level, score-level, hybrid, and model-level fusion. In data-338
level fusion, individual data streams are fused prior to feature engineering (e.g., fusing339
video data from two cameras). Feature-level fusion consists of independently computing340
features from each modality and then fusing the features prior to classification (e.g.,341
Castellano et al. [2008], D’Mello and Graesser [2010], and Litman and Forbes-Riley342
[2006a]). In decision-level fusion, classification is first performed on the individual343
features and the outputs (decisions) are fused via one of several voting rules (e.g.,344
Kanluan et al. [2008], Koelstra et al. [2012], and Walter et al. [2011]). Score-level345
fusion is related to decision-level fusion in that affect likelihoods (or probabilities)346
computed by classifiers operating on independent modalities are fused (e.g., Gajsek347
et al. [2010]). Only a small number of systems relied on score-level fusion, so these were348
coded as decision-level fusion due to the similarity between these two methods. Hybrid349
fusion combines both feature- and decision-level fusion, for example, by combining350
independent decisions of individual UM classifiers with the decisions of a feature-351
level fused MM classifier (e.g., Chetty and Wagner [2008] and Mansoorizadeh and352
Charkari [2010]). Finally, model-level fusion takes advantage of the interdependencies353
among the various modalities during the fusion process (e.g., Caridakis et al. [2006],354
Eyben et al. [2010], and Metallinou et al. [2012]). When multiple fusion techniques355
were implemented and compared in a single study, the fusion method that yielded the356
highest accuracy was analyzed.357

Validation method is concerned with whether the affect detectors are expected to358
generalize to new individuals (person independent) or not (person dependent). This359
is a critical distinction because (for the most part) affect detectors are intended to360
be person independent but developing such systems is more challenging due to large361
interindividual variability in affect. Designation of an affect detector as person depen-362
dent or independent was rarely articulated in the papers, but could be inferred from363
the methods used to validate the detectors. Studies that used leave-one-person-out or364
leave-several-people-out validation techniques, where instances from the same individ-365
ual were either in the training or testing sets but never both, were deemed to be person366
independent (e.g., D’Mello and Graesser [2010], Savran et al. [2012], and Schuller367
[2011]). Studies that cross-validated within an individual, or studies where person in-368
dependence across training and testing sets was not carefully controlled were coded as369
person dependent (e.g., Castellano et al. [2008], Litman and Forbes-Riley [2006a], and370
Monkaresi et al. [2012]).371

2.3. Encoding Affect Detection Accuracy372

Table II provides several measures of UM and MM affect detection accuracies. The373
key measures were detection accuracy of the best, second-best, and worst UM detec-374
tors (Max1, Max2, and Min, respectively) and MM accuracy (MM). Most studies that375
performed a categorical classification used classification accuracy (i.e., the proportion376
of correctly classified instances) as the evaluation metric. In rare cases where both377
classification accuracy and the F1 measure were reported, classification accuracy was378
taken to be the metric in order to increase consistency among studies. The correlation379
coefficient was taken as the performance metric for regression models.380

MM1 effect was the key effect size metric. If a1 and a2 are accuracies associated with381
two UM detectors, and a12 is the MM accuracy, then the MM1 effect was computed as382
the percent improvement over the best UM detector (see Equation (1)). This metric383
affords a unified analysis framework for studies that used classification accuracies, F1384
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scores, or correlation coefficients to quantify performance.385

MM1 effect = 100 ∗ a12 − max(a1, a2)
max(a1, a2)

. (1)

In addition to the MM1 effect, MM2 and MMMin effects were also computed as the386
percent MM improvement over the second-best and worst UM detectors. These are387
important metrics to test for inhibition effects, which occur when MM accuracies are388
lower than underperforming UM detectors.389

It is important to note three points about the data presented in Table II. First,390
accuracy scores associated with the best-performing detector were used when multiple391
detectors or multiple fusion techniques were considered for the same classification task.392
For example, Soleymani et al. [2012] reported both feature-level and decision-level MM393
accuracies. Decision-level fusion yielded higher accuracies, so only decision-level fusion394
results were used in the subsequent analyses.395

Second, several studies performed multiple discriminations on the same set of af-396
fective states. For example, D’Mello and Graesser [2010] developed one classifier to397
predict four affective states and another to predict an overlapping but different set of398
five affective states. Similarly, the study by Eyben et al. [2011] contributed five data399
points by independently predicting five affect dimensions (i.e., activation, expectancy,400
intensity, power, and valence). In general, one data point was obtained for the studies401
that performed a categorical classification. It was the dimensional studies that con-402
tributed multiple data points because the number of models increases proportional403
to number of dimensions considered. In all, data from 124 classification tasks was404
obtained. These 124 data points were reduced to the 90 shown in Table II after the405
aggregation procedure discussed next.406

Third, when multiple classification tasks on the same dataset were performed, the one407
closest to real-world performance was retained. For example, if text-based models were408
built on automatically recognized and human-transcribed speech (e.g., Litman and409
Forbes-Riley [2006b]), then the former was analyzed. Similarly, person-independent410
validation results were used when both person-dependent and person-independent411
validation methods were reported (e.g., D’Mello and Graesser [2010]). For the same412
reason, event-level or segment-level analyses with a temporal resolution in seconds413
were preferred over frame-level analyses with a temporal resolution in milliseconds414
because affective phenomena operate across a coarser time span ranging from a few415
seconds to tens of seconds [D’Mello and Graesser 2011; Rosenberg 1998].416

2.4. Data Treatment417

Data from 124 classification tasks were subjected to aggregation, winsorization, and418
standardization procedures as noted in the following.419

Aggregation. Studies that performed multiple classification tasks on the same420
dataset would bias the results and would violate independence assumptions of the421
inferential statistical analyses applied to the data. Therefore, the data reported in Ta-422
ble II consists of average scores across multiple classification tasks on the same dataset.423
For example, the five correlation coefficients from the Eyben et al. [2011] study dis-424
cussed previously were averaged to yield one data instance. Studies that reported425
multiple classification tasks on different datasets were analyzed as separate data in-426
stances (e.g., Rosas et al. [2013] where results corresponding to two distinct datasets427
were reported in the same article).428

Winsorization (Outlier Treatment). An examination of the MM, Max1, Max2, and429
Min accuracy distributions did not yield any outliers, which, following standard con-430
ventions, were defined as values exceeding three standard deviations from the mean.431
However, the MM1, MM2, and MMMin effects yielded two, one, and two outliers,432
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respectively. These outliers were replaced with the values corresponding to three stan- 433
dard deviations from the means of each distribution (60.7%→55.5%; 91.9%→55.5% for 434
MM1 effect; 275%→168% for MM2 effect; and 217%→182% and 275%→182% for MM- 435
Min effect), akin to a Winsorization procedure [Tukey and McLaughlin 1963], which is a 436
widely used technique for outlier treatment. Paired-sample t-tests on the distributions 437
before and after outlier replacement did not yield significant differences (p > 0.10) for 438
any of the three MM effects, thereby indicating that this method of treating outliers 439
had no unintended effects. 440

Standardization. The three MM effects represent percent improvements over a base- 441
line, so they are not sensitive to differences in accuracy metrics. However, raw detector 442
accuracy scores were quantified in terms of percent correct (recognition accuracy), 443
correlation coefficient, or F1 measure. These different metrics raised issues for the sta- 444
tistical methods used to analyze the raw detection accuracy scores (Max1, Max2, and 445
Min). Hence, these measures were standardized (i.e., z-scores were computed) within 446
each metric prior to the analyses. 447

3. RESULTS AND DISCUSSION 448

The results are presented with respect to the three major research questions listed in 449
the Introduction: (a) What are the major trends in contemporary MM affect detectors? 450
(b) What is the added improvement (if any) of MM affect detection accuracy (MM1 451
effects) over the best UM detectors? (c) Can we identify system-level factors identified 452
in (a) that are predictive of MM1 effects analyzed in (b)? 453

It is useful to clarify our terminology before proceeding. System and study are used to 454
refer to a multimodal affect detector (system) and its validation (study). Effects refer to 455
percent improvement in MM accuracies over UM accuracies (MM1, MM2, and MMMin 456
effects), while accuracies refer to affect detector performance represented as z-scores 457
following metric-level standardization of percent correct, F1, and correlation coefficient 458
(see Section 2.4). 459

3.1. Major Trends in MM Affect Detectors 460

Table III lists descriptive statistics on the various system-level factors described in 461
Section 2.2. 462

Data Sources. We note that on average MM detectors were constructed from affective 463
data from 21.2 participants (not shown in Table III). There was also considerable 464
variability (SD = 37.8) in the number of participants used for model building, ranging 465
from a single participant [Busso et al. 2004; Haq et al. 2008] to 343 participants 466
[Wöllmer et al. 2013b]. An examination of the distribution indicated that 25% of the 467
studies had five participants or fewer, 50% had 12 participants or fewer, and 97% of 468
studies had fewer than 50 participants. 469

The data also indicated that the MM detectors were more likely to be trained on 470
actor-portrayed affective displays (>50% of studies) rather than on more spontaneous 471
expressions that were either experimentally induced or naturally occurred. 472

Affect Models. As is evident in Table III, approximately two thirds of the affect 473
detectors focused on discrete (or categorical) affect models and performed classification 474
tasks. Even though one third of the studies used dimensional models of affect, only 7.8% 475
performed regressions. This was because several studies either collected categorical 476
measures of affect dimensions (e.g., low or high arousal) or discretized continuous 477
measures (e.g., via median splits or by applying clustering). On average, the classifiers 478
discriminated 4.71 affective states (SD = 2.28; median = 4 states), with a minimum 479
of 2 and a maximum of 12 (not shown in Table III). The results also revealed that 480
approximately one third of the affect detectors exclusively focused on discriminating 481
the basic emotions, while less than 10% primarily focused on nonbasic emotions. Even 482
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Table III. Descriptive Statistics on Study Features

Dimension Prop. Dimension Prop.
Data type Measure. model

Acted 0.522 Disc. 0.644
Induced 0.278 Dim. 0.356
Natural 0.200

Detection model Affect detected
Classification 0.922 Disc. basic 0.367
Regression 0.078 Disc. nonbasic 0.078

Disc. mixed 0.178
No. of modalities Dim. simple 0.278

Bimodal .867 Dim. complex 0.100
Trimodal .133

Fusion method
Modality Feature 0.389

Face 0.767 Decision 0.356
Voice 0.822 Hybrid 0.056
Text 0.167 Model 0.200
Body 0.133
Eye Gaze 0.011 Validation method
Peri. physio. 0.111 Person indep. 0.378
Central physio. 0.056 Person dep. 0.622
Content 0.067

Notes: Prop. = Proportion; Peri = Peripheral; Physio. =
Physiology; Content = Content/Context; Measure. = Mea-
surement; Disc. = Discrete; Dim. = Dimensional; Indep. =
Independent; Dep. = Dependent.

though 17.8% of the studies included a mixture of basic and nonbasic emotions, these483
studies mainly focused on basic emotions with one or two nonbasic emotions. Hence,484
more than 50% of the studies had a primary focus on the basic emotions.485

The two primary dimensions of valence and arousal dominated the dimensional486
models (approximately 30% of studies) with 10% of studies modeling more complex487
dimensions. In all, 48 affective states (including dimensions) were modeled in the 90488
studies (not shown in Table III). Only nine of the 48 affective states (18.8%) appeared489
in more than 5% of the studies, and these nine states collectively accounted for 76% of490
the states detected across all studies. The nine frequent states were (a) the six basic491
emotions—anger (12%), sadness (11%), happiness (9%), fear (7%), disgust (7%), and492
surprise (7%); (b) the two primary dimensions of valence (8%) and arousal (7%); and493
(c) the state of no apparent feeling (8%) or neutral.494

Modalities. The face and voice were the most commonly used modalities, each oc-495
curring in over 75% of the studies. Text, body movements, and peripheral physiology496
were individually used in at least 10% of the studies. Eye gaze, central physiology, and497
context/content models were relatively infrequent.498

Fifteen unique MM combinations were noted in the 90 studies. Of these, most were499
bimodal (86.7%) systems, while a handful were trimodal systems. Audiovisual systems500
(face + voice) comprised 55.6% of the MM systems, followed by speech + text (11.1%)501
and face + speech + text (5.6%). These three combinations accounted for 72.3% of502
the systems. In addition, voice + peripheral physiology, face + body movements, and503
face + voice + body movements each accounted for 4.4% of the MM systems. In all,504
these six MM combinations accounted for 85.6% of the systems, while the remaining505
nine combinations were quite infrequent (each observed in <4% of the studies).506

Fusion Methods. Several studies tested multiple fusion methods, so it was difficult507
to accurately estimate if a particular method was used more frequently than others.508
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Fig. 1. Histogram (left) and kernel smoothing density estimation (right) of distribution of MM1 effects.

When multiple methods were used in the same study, we only recorded the method 509
that yielded the best performance, because the final detector would presumably use the 510
best-performing method. As noted in Table III, feature-level and decision-level fusion 511
were dominant and were collectively observed in approximately 75% of the studies. 512
Model-level fusion was somewhat less frequent (20%), but occurred at nontrivial rates. 513
Data-level fusion was nonexistent and hybrid fusion was rare. 514

The most common feature-level fusion strategy simply involved concatenating fea- 515
ture vectors from individual modalities (e.g., D’Mello and Graesser [2010] and Forbes- 516
Riley and Litman [2004]) with or without feature selection. The decision-level fu- 517
sion methods usually relied on simple voting rules (e.g., Dy et al. [2010] and Gajsek 518
et al. [2010]), but more nuanced ways of decision making were also proposed. Some of 519
these include metadecision trees [Wu and Liang 2011], cascading specialists [Kim and 520
Lingenfelser 2010; Wagner et al. 2011], Kalman filters [Glodek et al. 2013], Bayesian 521
belief integration [Chanel et al. 2011], and Markov decision networks [Krell et al. 2013]. 522
There was considerable variation in model-level fusion methods, but bidirectional long 523
short-term memories [Eyben et al. 2010; Metallinou et al. 2012; Wöllmer et al. 2010, 524
2013a], various HMM-based approaches (error-weighted semicoupled HMMs [Lin et al. 525
2012], multistream HMMs [Zeng et al. 2005, 2007], boosted multistream HMMs [Zeng 526
et al. 2006], boosted coupled HMMs [Lu and Jia 2012]) and Bayesian-based approaches 527
(e.g., Jiang et al. [2011], Paleari et al. [2009], Sebe et al. [2006], and Wang et al. [2013]) 528
were most prominent. 529

Validation Methods. Tenfold cross-validation at the segment (or frame) level was the 530
most popular validation method. This method was used in 62.2% of the studies. This 531
validation method is problematic when the goal is to build person-independent models 532
(which is usually the goal), since instances from the same individual are in both the 533
training and testing sets. In contrast, leave-one-subject-out or leave-several-subjects- 534
out validation methods guarantee training and testing independence, but were used 535
with considerably less frequency (37.8% of studies). 536

3.2. MM Effects and Accuracy 537

The data were analyzed in terms of (a) MM improvement over best UM accuracies 538
(MM1 effects), (b) MM improvement over second-best (MM2 effects) and worst (MMMin 539
effects) UM accuracies, and (c) relationships between UM and MM accuracies. 540

Overall MM Effects (MM1 Effect). The distribution of MM1 effects is presented in 541
Figure 1. A one-sample t-test indicated that the mean MM1 effect of 9.83% significantly 542
differed from zero, t(89) = 8.08, p < 0.001, d = 0.85 sigma (large effect1). This suggests 543

1Cohen’s d is a common effect size statistic in standard deviation units (sigma) between two samples
with means M1 and M2 and standard deviations s1 and s2 [Cohen 1992]. According to Cohen, effect
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Fig. 2. MM1 effects (Y axis) by study number (X axis) ordered by effect size (ascending order).

Table IV. Grouping of MM1 Effects

Q1

Number of Percent of Cumulative
Group Studies Studies (%) Percent (%)
MM1 � −1 5 5.56 5.56
−1 < MM1 � 1 8 8.89 14.4
1 < MM1 � 5 21 23.3 37.8
5 < MM1 � 10 23 25.6 63.3
10 < MM1 � 20 20 22.2 85.6
20 < MM1 � 30 8 8.89 94.4
MM1 > 30 5 5.56 100.0

that, on average, the MM detectors yield positive improvements in performance com-544
pared to the best UM detectors.545

There was considerable variance in the MM1 effect distribution. MM1 effects ranged546
from −14.2% to 52.5% with a standard deviation of 11.5%. The large range and the547
fact that the standard deviation was greater than the mean, suggests that the median548
value of 6.60% might provide a more accurate estimate of the central tendency of the549
distribution than the mean.550

To examine the distribution of MM1 effects more closely, we sorted the distribution551
(see Figure 2), divided it into several categories of practical interest (see Table IV) and552
computed the percent of studies falling into each category. This analysis indicated that553
14.4% of the studies either yielded negative or negligible (�1%) MM1 effects. ResultsQ2554
for the remaining 85% of the studies were much more positive in that roughly half555
of the studies yielded either small 1%–5% or medium-sized (5%–10%) MM1 effects.556
Approximately 35% of the studies yielded impressively large effects (>10%).557

MM2 and MMMin Effects. MM2 and MMMin effects are identical for the studies that558
only considered two modalities (87% of studies), yet we analyze these effects separately559
because there were some subtle differences in their distributions. MM2 effects ranged560
from 4.40% to 168.4% with an impressive mean of 40.0% (SD = 36.9%). MMMin effects561
had a mean of 43.7% (SD = 40.0%) and a range of 4.40%–182.3%. Given the large562

sizes approximately equal to 0.3, 0.5, and 0.8 represent small, medium, and large effects, respectively.

d = (M1 − M2)/

√
s2
1 +s2

2
z .
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Fig. 3. Scatter plots denoting relationships between MM and UM accuracy along with regression line for
(a) regression of MM (Multi) on best UM (Uni 1) accuracy; (b) regression of MM (Multi) on second-best UM
(Uni 2) accuracy; (c) same as (a) but after controlling for second-best UM accuracy; and (d) same as (b) but
after controlling for best UM accuracy.

standard deviations, the median values of 27.9% and 29.4% for MM2 and MMMin 563
effects, respectively, might be a more accurate summary statistics of these distributions. 564
One-sample t-tests indicated that the mean MM2 effect significantly differed from zero, 565
t(89) = 10.3, p < 0.001, d = 0.1.08 sigma, as did the mean MMMin effect, t(89) = 10.4, 566
p < 0.001, d = 1.09 sigma. Furthermore, paired samples t-tests indicated that the 567
mean MM2 effect was significantly, t(89) = 8.18, p < 0.001, and substantially (d = 1.11 568
sigma) greater than the mean MM1 effect (9.83%) A similar finding was discovered 569
when MMMin effects were compared to MM1 effects, t(89) = 8.59, p < 0.001, d = 1.15 570
sigma. In general, MM2 and MMMin effects were approximately four times greater 571
than MM1 effects, so MM detectors were substantially more accurate than their less 572
effective UM counterparts. 573

Relationships between UM and MM Accuracies. There was a very robust correlation 574
between best UM and MM accuracies, r(88) = 0.870, p < 0.001. The correlation be- 575
tween second-best UM and MM accuracies was notable, but smaller, r(88) = 0.681. Best 576
and second-best UM accuracies were also strongly correlated, r(88) = 0.725, p < 0.001. 577

We simultaneously regressed MM accuracy (dependent or predicted variable) on 578
best and second-best UM accuracies (independent or predictor variables). The model 579
was significant, F(2, 87) = 139.7, p < 0.001, and explained a robust amount of the 580
variance,2 R2 = 0.763; f 2 = 3.22. The best UM accuracy was a significant predictor 581
(β = 0.795, p < 0.001) but second-best UM accuracy was not (β = 0.104, p = 0.174). 582
This indicates that much of the variance in MM accuracy can be explained by the best 583
UM accuracy. 584

These patterns are shown in Figure 3, where we note that the linear relationship 585
between MM and best UM accuracy (Figure 3(a)) is retained after controlling for second- 586
best UM accuracy (Figure 3(c)). However, the linear relationship between MM and 587

2R2 or the coefficient of determination is used to assess goodness of fits of regression models. Using Cohen’s

recommended conventions [Cohen 1992], effect sizes are expressed as Cohen’s f 2 = R2

1−R2 and values of 0.02,
0.15, and 0.35 are taken to signify small, medium, and large effects, respectively.
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second-best UM accuracy (Figure 3(b)) essentially disappears after controlling for best588
UM accuracy (flat line in Figure 3(d)).589

Hence, the final model simply consisted of predicting MM accuracy from best UM590
accuracy. This model was significant, F(1, 88) = 274.8, p < 0.001, and robust, R2 =591
0.757, f 2 = 3.12. The standardized model coefficient (β weight) was 0.870, which592
indicates that a 1 unit (in standard deviation units) increase in best UM accuracy593
results in a 0.870 unit increase in MM accuracy.594

To address the question of whether this regression model generalizes to new studies,595
we performed a between-study 10-fold cross-validation analysis, which yielded an R2596
of 0.746, which was very similar to R2 on the entire training set (0.757). The very small597
discrepancy of 0.011 suggests that the regression model is expected to generalize to598
new studies.599

There is the question of whether MM accuracy increases, decreases, or remains600
unchanged as a function of the difference between best and second-best UM accuracies.601
To address this question, we retained the residuals (prediction errors or unexplained602
variance) after regressing best on second-best UM accuracies. MM accuracy was then603
regressed on the residual. The resultant model was significant and explained a modest604
amount of variance, F(1,88) = 37.6, p < 0.001, R2 = 0.299, f 2 = 0.43, β = 0.574.605
This finding suggests that MM accuracy improves in relation to the difference between606
best and second-best UM accuracies. Put simply, MM accuracy was higher when UM607
accuracies were more independent.608

3.3. Moderation Analysis609

Section 3.1 analyzed general trends in the design of MM affect detectors (system-level610
factors) while Section 3.2 quantified performance in terms of MM effects. In this section,611
we assess whether the system-level factors can predict MM performance.612

The analyses proceeded by independently regressing MM1 effects and MM accuracy613
on the eight system-level factors listed in Table III plus the number of participants614
and number of affective states (10 total). Eight out of these 10 factors were categor-615
ical variables, so these were dummy coded prior to constructing the models. It was616
not possible to consider every unique modality combination given that there were 15617
modality combinations and only 90 data points. However, since 55.6% of the modality618
combinations were face + voice, we created a new indicator variable and coded it as a 1619
for face + voice and a 0 for other modality combinations. Furthermore, given that only620
five studies reported hybrid fusion, these studies were removed prior to constructing621
the model for fusion method.622

Predicting MM1 Effects. The resultant models for predicting MM1 effects are shown623
in Table V, where k is the number of studies used to construct each model. F is the624
test statistic for model significance (p value is in parentheses) and R2 is the measure625
of model fit. Significant (p < 0.05) models were discovered for data type, number of626
affective states, and classifier fusion method, but not for the remaining seven factors.627

The significant model for data type yielded a small- to medium-sized effect ( f 2 =628
0.087). A test of model coefficients indicated that MM1 effects for detectors built from629
natural data were statistically equivalent to those built from induced data (p = 0.299),630
but were significantly (p = 0.009) lower than detectors built from acted data. The631
induced models yielded quantitatively lower MM1 effects than the acted models, but632
the difference was not quite significant (p = 0.102). These patterns are graphically633
depicted in Figure 4(a), where we note a negative linear relationship between MM1634
effects and authenticity of training and validation data (mean MM1 effects = 12.7%,635
8.19%, and 4.59% for acted, induced, and natural data, respectively). More precisely,636
if data type is numerically coded along an authenticity dimension, with 1, 2, and 3637
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Table V. Regression Models for Predicting MM1 Effects

Significance and Fit
Dimension k F (p) R2

Number of participants 88 0.004 (0.947) 0.000
Data type 90 ∗∗3.80 (0.026) 0.080
Affect representation model 90 1.25 (0.267) 0.014
Affect detection model 90 0.329 (0.567) 0.004
Affect states detected 90 0.828 (0.511) 0.037
Number of affective states 83 ∗∗6.77 (0.011) 0.077
Number of modalities 90 1.02 (.316) .011
Modality (face + voice vs. other) 90 2.08 (.153) .023
Fusion method 85 ∗∗4.96 (0.009) 0.108
Validation method 90 0.133 (0.716) 0.002
Note: ∗∗denotes significant models at the p < 0.05 level.

Fig. 4. Mean MM1 effect by (a) data type and (b) fusion method. Error bars are 95% confidence intervals.

representing acted, induced, and natural data, respectively, then there is a negative 638
−0.245 (p = 0.020) correlation between data authenticity and MM1 effects. 639

The results also indicated that MM1 effects could be predicted from the number of 640
affective states in the 85 studies that built classifiers instead of regressors. This model 641
also yielded a small- to medium-sized effect ( f 2 = 0.083). Interestingly, the number of 642
affective states was a positive predictor (β = 0.278), so MM1 effects improved when 643
more affective states were considered. One tentative interpretation of this finding is 644
that the classification problem becomes more difficult when more affective states are 645
considered and the additional modalities have more to contribute in this situation. 646

The third significant model had MM fusion type as the predictor and also yielded 647
with a small- to medium-sized effect ( f 2 = 0.121). An analysis of the model coefficients 648
indicated that MM1 effects associated with feature- (M = 7.73%) and decision-level 649
(M = 6.68%) fusion were statistically equivalent (p = 0.661), but were lower than 650
MM1 effects for model-based fusion (M = 15.3%, p < .05; see Figure 4(b)). This finding 651
should be interpreted with caution because it does not represent direct comparisons of 652
different fusion techniques on the same datasets and classification tasks. Instead, it 653
simply suggests that, on average, model-level fusion yielded higher MM1 effects than 654
feature-level and decision-level fusion. 655

Predicting MM Accuracy. In Section 3.2, we reported that 75.7% of the variance in 656
MM accuracy was explained by the best UM accuracy. We investigated if this model 657
could be improved by adding system-level factors. The analyses proceeded by testing if 658
each system-level factor explained unique variance in MM accuracy after accounting 659
for best UM accuracy (our previous model). This was accomplished with 10 hierarchical 660
linear regressions with UM accuracy as the predictor for the Step 1 models and each 661
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system-level factor as individual predictors in the Step 2 models. A significant change662
in R2 from Step 1 to Step 2 would indicate that the system-level feature under con-663
sideration explained additional variance in MM accuracy above and beyond best UM664
accuracy.665

The results yielded significant R2 changes (�R2) for data type (�R2 = 0.034, p =666
0.002), affect representation model (�R2 = 0.011, p = 0.046), number of affective667
states classified (�R2 = 0.025, p = 0.005), and fusion method (�R2 = 0.014, p =668
0.041), but not for number of subjects (�R2 = 0.001, p = 0.633), affect detection model669
(�R2 = 0.00, p = 1.00), affect states detected (�R2 = 0.019, p = 0.144), number of670
modalities (�R2 = 0.00, p = 0.936), modality (face + voice vs. other)—(�R2 = 0.009,Q3671
p = 0.068), and validation method (�R2 = 0.06, p = 0.137).672

Examining coefficients of models with significant �R2 indicated that (a) detectors673
developed from induced and natural affect had MM accuracies that were on par but674
significantly (p < 0.01) lower than detectors developed from acted data, (b) detectors675
that used discrete affect models yielded significantly (p = 0.043) higher accuracies676
than their dimensional counterparts, (c) MM accuracies increased (p = 0.005) when677
more affective states were classified, and (d) model-level fusion resulted in significantly678
(p < 0.05) higher MM accuracies than feature- and decision-level fusion.679

Next, we created a model that predicted MM accuracy when these four key factors680
(data type, affect representation model, number of affective states, and fusion method)681
were considered simultaneously. This model was constructed using a forward feature682
selection approach, where features were incrementally added if they improved model683
fit. It should be noted that due to missing data (elimination of five studies that used684
hybrid fusion and number of states not applicable in the seven studies that developed685
regressors), this model was constructed from 78 out of the 90 studies. The Step 1 model686
on these 78 studies with the best UM accuracy as a predictor yielded an R2 of 0.796687
(note the difference from the 0.757 R2 reported earlier on all 90 studies). The Step 2688
model had an R2 of 0.832, which represented a significant improvement (�R2 = 0.036,689
p = 0.014) from the Step 1 model. The significant predictors that were retained by690
forward feature selection were best UM accuracy (β = 0.879, p < 0.001), whether the691
training data was acted (coded as 1) or not (coded as 0) (β = 0.138, p = 0.006), and692
whether model-level fusion (coded as 1) was used in lieu of feature and decision fusion693
(coded as 0) (β = 0.122, p = 0.014). Finally, 10-fold cross-validation yielded an R2 of694
0.803. The very small discrepancy of 0.029 from R2 on entire training data is suggestive695
of excellent generalizability of the final model.696

4. GENERAL DISCUSSION697

Timely surveys that synthesize research are critical in any burgeoning research area.698
The qualitative nature of surveys can be complemented with quantitative meta-699
analyses, an invaluable scientific tool for approximating a population variable from700
effects obtained in individual studies that vary along multiple dimensions [Borenstein701
et al. 2009]. In this article, we identified 90 contemporary MM affect detectors from702
the peer-reviewed literature, coded and descriptively analyzed each detector along 10703
dimensions, performed a meta-analysis on MM accuracy as compared to UM accuracy704
(MM effects), and identified important system-level moderators of MM1 effects. In705
this section, we summarize our major findings along with their applied implications,706
discuss their theoretical implications, address limitations, offer recommendations for707
future work, and make concluding remarks.708

4.1. Major Findings and Applied Implications709

The major findings are organized with respect to the three research questions listed710
in the Introduction: (a) identifying major trends in MM affect detectors, (b) analyzing711
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MM effects and MM accuracy, and (c) identifying the factors that moderate MM effects 712
and accuracies. 713

Major Trends in MM Affect Detectors. The first surveys on automated affect detection 714
emerged over a decade ago [Cowie et al. 2001; Pantic and Rothkrantz 2003]. According 715
to these pioneering surveys, and at the risk of overgeneralization, the state of the art 716
in affect detection in 2003 and earlier could be summarized as “the use of basic sig- 717
nal processing and machine learning techniques, independently applied to still frames 718
(but occasionally to sequences) of facial or vocal data, to detect exaggerated context- 719
free expressions of a few basic affective states that are acted by a small number of 720
individuals with no emphasis on generalizability.” Based on the present analysis, sub- 721
jective interpretation, and somewhat overgeneralization, the 2013 state of the art can 722
be summarized as “the use of basic and advanced signal processing and machine learn- 723
ing techniques, independently and jointly applied to sequences of primarily facial and 724
vocal data, to detect exaggerated and naturalistic context-free and context-sensitive 725
expressions of a modest number of basic affective states and simple dimensions that 726
are acted or experienced by a modest number of individuals with some emphasis on gen- 727
eralizability.” The italicized items in the previous summary reflect important changes 728
in the state of the art from 2003 to 2013. Based on this comparison, it is clear that con- 729
siderable progress has been made, although there is still more to be done. We discuss 730
some of the remaining issues with respect to the following four aspects: authenticity, 731
utility, scope, and generalizability. 732

Authenticity refers to the naturalness of training and validation data and is directly 733
related to the extent to which an affect detector developed in the lab can be applied 734
in the real world. The fact that more than 50% of the affect detectors were based 735
on acted data is of some concern since spontaneous and acted expressions differ in 736
surprising ways. A striking example is a study that found that individuals rarely smile 737
when generating posed expressions of frustration, but smiles were discovered in 90% 738
of instances of spontaneous frustration [Hoque and Picard 2011]. 739

Utility refers to whether the affect detectors can be expected to be useful in real-world 740
contexts. Assuming that detection accuracy will eventually be sufficiently accurate, the 741
question is whether the affective states that are detected are relevant in the real-world 742
contexts of use (e.g., editing a word document on a computer). This is a critical issue 743
since more than 50% of the studies primarily focused on detecting the basic emotions of 744
anger, sadness, fear, frustration, disgust, and surprise. This is a bit unfortunate because 745
it has been asserted that many interactions with computers and even human-human 746
interpersonal communication rarely involve the basic emotions [Cowie et al. 2005; Zeng 747
et al. 2009]. Some recent evidence for this assertion can be found in a meta-analysis 748
on 24 studies that collectively tracked the emotions of over 1,700 students during 749
interactions with a range of learning technologies [D’Mello 2013]. The major finding 750
was that engagement, confusion, boredom, curiosity, frustration, and happiness were 751
the most frequent affective states. With the exception of happiness, which occurred 752
with some frequency, the basic emotions were rarely observed in over 1,200 hours of 753
interaction. 754

Scope (in this context) simply refers to the landscape of configurations that were 755
covered by the affect detectors. In addition to the basic versus nonbasic emotion im- 756
balance discussed previously, perhaps the greatest disparity emerges in the modality 757
combinations. More specifically, the eight modalities identified in Table III afford 28 758
and 56 unique bimodal and trimodal combinations, respectively. However, only 15 out 759
of the possible 84 (28 + 56) combinations (17.9%) were observed at least once in the 760
data. Six of these (7.14% of possible combinations) were represented in more than 85% 761
of the studies, while the face + voice, which represents a mere 1.19% of possible modal- 762
ity combinations, was the focus of more than half of the studies. Indeed, the explored 763
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MM space is sparse and there is both the room for and the need to consider different764
modality combinations.765

Generalizability pertains to an affect detector’s ability to maintain its level of ac-766
curacy when applied to new individuals and to new or related contexts. One way to767
facilitate generalizability is to collect training data in diverse contexts and from a large768
number of individuals. There is clearly more work to be done in this respect since 97%769
of the studies collected training and validation data from fewer than 50 individuals and770
usually in a single context (e.g., watching videos, interacting with a specific interface).771
Generalizability across the individual can be assessed via person-independent models,772
where training and validation data are completely independent. As noted in Table III,773
about 40% of the studies used person-independent validation methods, so there is some774
confidence on their generalizability (across individuals). Unfortunately, no clear case775
for generalizability can be made for the remaining 60% of studies that used person-776
dependent validation methods. Furthermore, no notable efforts were made to assess777
generalizability across tasks, situational contexts, datasets, and cultures. This is par-778
ticularly important since emerging data suggests that models trained on individuals779
from one demographic do not necessarily generalize to another [Ocumpaugh et al.780
2014].781

MM Effects and Accuracy. A number of important conclusions can be drawn from the782
analysis of MM effects and MM and UM accuracies. Over 85% of the studies resulted783
in MM1 effects greater than at least 1%. This provides important evidence that MM784
classifiers do outperform their best UM counterparts. The sizes of the mean (9.83%)785
and median (6.60%) MM1 effects resemble modest improvements over UM accuracy.786
Importantly, however, MM1 effects associated with detectors trained on naturalistic787
data (4.59%) were three times lower than detectors trained on acted data (12.7%).788
Since the ultimate goal of affect detection is to sense naturalistic affective expressions,789
the modest 4.59% effect might represent a more accurate estimate of state-of-the-art790
multimodal affect detection improvement.791

The question of whether this modest improvement in accuracy obtained by MM792
systems is worth their increased complexity is a question that is best addressed at793
the application level. It should also be noted that the present study only evaluated794
MM detectors from a single dimension, namely, performance improvements over UM795
detectors. However, MM detectors have additional advantages, such as providing higher796
fidelity models of affect expression and the ability to address missing data problems797
that can cripple UM detectors. Furthermore, the analysis that focused on assessing MM798
performance improvements over the second-best and worst UM classifier indicated799
that although combining modalities yields modest improvements in affect detection800
accuracies, considering multiple individual modalities can have a major impact on801
performance. This is because performance would be severely impacted if only one802
modality was modeled and in the worst case if it always happened to be the lower803
performing modality.804

Turning back to MM1 effects, one reason for their relatively modest size, especially805
for the systems trained on more naturalistic data, is that there might be consider-806
able redundancy among the different modalities. Strong correlations among the best807
UM, second-best UM, and MM accuracies provide some evidence to support this view.808
Evidence for redundancy among modalities can also be obtained by the fact that the809
best UM accuracies predicted 75.7% of the variance in MM accuracies and this finding810
generalizes to new studies. Impressive MM1 effects are not expected if the different811
modalities convey similar information, albeit in different ways. The analysis that found812
that MM accuracies increased when UM accuracies were more dissimilar provides some813
evidence in support of this claim.814
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The lower multimodal effects for natural emotional expressions compared to acted 815
expressions might also be attributable to several differences among the two. In particu- 816
lar, some aspects of acted expressions that are conducive to multimodal effects include 817
increased intensity (since they are usually exaggerated), decreased variability (since 818
they are generated out of context), increased coordination between different modalities 819
(since prototypical emotions are invoked), and increased specificity (since there is lower 820
likelihood of multiple emotions being experienced) [Barrett 2006; Russell 2003]. 821

Factors that Moderate MM Effects. We examined 10 system-level factors and iden- 822
tified three that moderated MM1 effects. We discovered that MM1 effects were posi- 823
tively impacted by acted data (vs. induced or natural data), number of affective states 824
classified, and when model-level modality fusion methods were used (vs. feature or 825
decision level). Two out of these four system-level factors (acted vs. nonacted data and 826
model-level vs. non-model-level fusion) yielded a 3.6% improvement in predicting MM 827
accuracy over best UM accuracy. Furthermore, fit of the final model with all three 828
predictors was excellent (R2 of 0.832), and generalizes to new studies as verified with 829
a 10-fold study-level cross-validation analysis. 830

The final model, specified in Equation (2), can be used by researchers to predict 831
expected multimodal classification accuracy (proportion of cases correctly classified 832
ranging from 0 to 1) prior to even constructing the classifiers. Best unimodal accuracy 833
is the classification accuracy (as a proportion ranging from 0 to 1) of the best UM 834
detector. Data type acted is an indicator variable set to 1 for acted data and 0 for 835
induced data. Model-level fusion is also an indicator variable set to 1 for model-level 836
fusion and 0 for feature- and decision-level fusion. 837

MM accuracy = 0.900 × Best unimodal accuracy + 0.273 × Data type acted
+ 0.312 × Model level fusion − 0.253 (2)

4.2. Theoretical Implications 838

The fact that combining MM accuracies yielded modest improvements has important 839
implications for psychological theories of emotion. These theories in turn guide much 840
of the affect detection models, so alignment of our findings with emotion theory has 841
implications for next-generation affect detection systems. 842

The classical model of emotion, which was proposed by Tomkins [1962], Ekman 843
[1992], and Izard [2007], and others, posits that discrete “affect programs” produce the 844
physiological, behavioral, and subjective changes associated with a particular emotion. 845
According to this theory of “basic emotions,” there is a specialized circuit for each ba- 846
sic emotion in the brain. Upon activation, this circuit triggers a host of coordinated 847
responses in the mind and body. In other words, an emotion is expressed via a sophisti- 848
cated synchronized response that incorporates peripheral physiology, facial expression, 849
speech, modulations of posture, affective speech, and instrumental action. This predic- 850
tion is very relevant to affect detection because it suggests that MM affect detection 851
should be more reliable due to this coordinated recruitment of response systems. 852

In contrast to this highly integrated, tightly coupled, central executive view of emo- 853
tion, researchers have recently argued in favor of a disparate, loosely coupled, dis- 854
tributed perspective [Coan 2010; Lewis 2005]. According to this contemporary view, 855
there is no central affect program that coordinates the various components of an emo- 856
tional episode. Instead, these components are loosely coupled and the specific context 857
and appraisals determine which bodily systems are activated. These models would 858
accommodate the prediction that in most cases a combination of modalities might con- 859
ceivably yield small improvements in classification accuracies. Hence, other than the 860
rare cases of prototypical emotions, or in artificial experimental contexts involving 861
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acted emotions, modest multimodal effects might be expected. Indeed, this is exactly862
what was observed in the present analysis.863

4.3. Limitations and Future Work864

There are five primary limitations to this work. The first pertains to the comprehen-865
siveness of the studies that were analyzed. Our goal was to obtain a reasonably large866
sample of MM studies rather than attempting to analyze every single study in the lit-867
erature. This is defendable because one does not need to study an entire population to868
estimate its parameters. Furthermore, almost all of the tests of statistical significance869
yielded significant results and we show evidence for model generalizability, thereby870
suggesting that our sample size of 90 studies was adequate to detect the relatively871
large effects in our data.872

The second limitation was that there was some imbalance with respect to the modal-873
ities, data, evaluation metrics, and affective states classified. For example, a majority874
of the studies we analyzed focused on audio-visual affect recognition, so the results875
are somewhat biased toward these systems. It is important to note, however, that this876
imbalance in our study is linked to a similar imbalance in the current state of the877
art. Specifically, most studies focus on the audio and visual modalities, while central878
physiology, gaze, and content/context-based sensing are comparatively rare. Peripheral879
physiological-based affect sensing (i.e., biosignals) are quite common affect detection880
modalities, but these are not often combined with face, voice, text, and other modalities.881

A third limitation that befalls all meta-analyses is the possibility of publication bias.882
This is because it is likely that the papers that report positive MM1 effects are more883
likely to be published, and subsequently included in this meta-analysis, than papers884
that report negligible or negative effects. We suspect that this might not be a severe885
issue in the present study, since approximately 15% of the studies reported negative or886
null (<1%) MM1 effects, but there is no clear way to assess publication bias with the887
present data.888

A fourth limitation is that the present study is more consistent with an informal889
meta-analytic approach rather than a more formal meta-analysis procedure. This was890
due to a lack of available information needed to perform a formal meta-analysis. More891
specifically, one of the key steps in conducting a meta-analysis is to inversely weight the892
effect size with respect to its error, but error estimates on affect detection accuracies893
were never reported in the papers we analyzed. This also precluded the use of well-894
established techniques to identify and correct for publication bias like trim-and-fill895
procedures [Duval and Tweedie 2000].896

Fifth, the somewhat large timespan (roughly 10 years) of the studies included in this897
analysis might also be of some concern since the newer classification and fusion meth-898
ods were unavailable for some of the older studies. Although the selection procedure did899
bias newer studies in lieu of older ones, it is possible that the older studies might have900
yielded better multimodal accuracies if some of the latest multimodal fusion methods901
were used. However, this does not appear to be a major concern as publication date902
(normalized so that the earliest study in 2004 was coded as 0, 2005 as 1, and so on) was903
not correlated with MM1 (r(88) = 0.042, p = 0.696), MM2 (r(88) = 0.056, p = 0.600),904
or MMMin (r(88) = 0.102, p = 0.338) effects. Nevertheless, it would be informative905
to reanalyze some of the older datasets with newer methods to ascertain if the use of906
newer techniques results in performance improvements.907

4.4. Recommendations for Future Systems908

In this section we list some guidelines based on our analysis of the 90 multimodal909
detectors. These should be considered to be general recommendations since decisions910
should ultimately be guided by specific application contexts. Some of these suggestions911
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might seem obvious; however, they are noted here since some or all were ignored in 912
more or less all of the studies. 913

First, there is a tradeoff between accuracy and authenticity in that highly accurate 914
results are usually obtained in nonauthentic contexts, specifically building person- 915
dependent models to detect acted expressions recorded in ideal conditions. Lower ac- 916
curacies obtained in more naturalistic contexts are of greater practical value. Second, 917
excellent results without meaningful comparison conditions are of less importance than 918
modest results with stringent comparisons. For example, if a new multimodal fusion 919
technique is being proposed, then its improvement over simpler techniques (e.g., naı̈ve 920
feature-level fusion) should be reported. Similarly, classification accuracy (or recogni- 921
tion rate) is a meaningless metric without a baseline comparison when there is an 922
uneven distribution of classes (more on this point follows). Third, only a small subset 923
of the landscape encompassing modalities and affective states has been explored. In 924
addition to refining systems that operate on already-explored areas of this landscape, 925
systems that explore new areas could lead to exciting innovations and discoveries. One 926
suggestion is to focus on different modalities in addition to or in lieu of the face and 927
speech to detect nonbasic affective states that pervade human-computer interactions, 928
such as confusion, frustration, and perhaps even boredom. Fourth, model-level fusion 929
techniques that embrace, rather than ignore, time-varying relationships among differ- 930
ent modalities showed significant promise, so it might be useful to channel research 931
efforts into improving these techniques. Fifth, the standard procedure of collecting la- 932
beled data to train supervised classifiers is inherently limited due to the manual affect 933
annotation process, thereby resulting in small datasets (in terms of number of unique 934
individuals). It is unlikely that this approach will lead to models that generalize at 935
large [Ocumpaugh et al. 2014]; hence, it might be useful to consider semisupervised 936
learning approaches that only require a small subset of the training data to be anno- 937
tated. Furthermore, crowd-sourcing techniques might be useful alternatives to current 938
cumbersome annotation methods that simply do not scale to larger datasets [McDuff 939
et al. 2012]. 940

It would also be highly beneficial if there was a more or less standard approach 941
to evaluating and reporting results of affect detectors. Some suggested evaluation 942
criteria include (a) meaningful comparison conditions when new systems are being 943
proposed (as noted previously), (b) using person-independent validation techniques, 944
(c) testing promising affect detectors developed by other researchers on one’s own 945
datasets (this was very rare), (d) testing new techniques on multiple datasets (i.e., 946
cross-corpus evaluations), and (e) studying generalizability to individuals of different 947
demographics—also referred to as population validity. 948

Suggestions on how to report results include reporting of (a) accuracy metrics that 949
correct for uneven distribution of classes, (b) error estimates on accuracy measures, 950
(c) number of individuals and instances, and (d) other information noted in Table III. 951
With respect to the first item in this list, Jeni et al. [2013] recently evaluated a num- 952
ber of classification accuracy metrics by performing simulations as well as analyzing 953
real datasets with imbalanced class distributions (skewed data). Their findings indi- 954
cated that several of the commonly used metrics, such as accuracy (recognition rate), 955
kappa, F-score, Krippendorff ’s alpha, and area under the precision-recall curve, were 956
adversely affected by data skew. Area under the Receiver Operating Characteristics 957
(ROC) curve (AUC or A′) was most robust to data skew, but tended to minimize poor per- 958
formance when compared to precision-recall curves. They recommended reporting both 959
original uncorrected performance metrics as well as skew-normalized versions of these 960
metrics with the normalization conducted by up-sampling and down-sampling the test 961
partitions (the paper also provides a link to software to compute the skew-normalized 962
statistics). 963
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4.5. Concluding Remarks964

The phrase “consistent, but modest under natural conditions” succinctly captures per-965
formance of contemporary affect detectors. These MM detectors were consistently better966
than their UM counterparts, but the improvements were modest when the detectors967
were trained on naturalistic affect expressions. A fundamental question is whether968
these findings can be best explained by the method or by the data. In particular, were969
MM1 effects modest because the detectors are not sufficiently sophisticated to model970
the intricate nonlinear time-varied relationships between the different modalities? Or971
were they modest because the training data did not contain adequate expressions of972
coordination among modalities, thereby rendering even the most sophisticated detec-973
tors inept? The field of MM affect detection is too young to currently settle these issues,974
so an answer awaits further research.975

However, there is another possibility beyond the method and the data. It may be the976
case that the expression of naturalistic emotions is inherently a diffuse phenomenon,977
which will yield modest effects irrespective of method or data. This suggests that in ad-978
dition to considering different methods and data sources, it might be useful to consider979
alternate models of emotion beyond the classic view described in Section 4.2. Thus980
far, the emphasis has been on the method and the data, at the expense of examining981
the affective phenomenon itself (i.e., insufficient attention to recent development in982
emotion theories and alternate models). Perhaps a more balanced approach that com-983
bines better data sources and innovative algorithms with more diverse emotion models984
represents the most promising way forward.985

Whatever the case may be, this review and analysis has shown that the field of986
multimodal affect detection has come a long way from the initial proof-of-concept sys-987
tems of the past. Skeptics who thought that computers could never sense anything as988
elusive as affect have repeatedly been proven wrong. Even more significant is the fact989
that emerging systems go beyond detecting affect by dynamically responding to the990
sensed affect, thereby closing the so-called affective loop [Conati et al. 2005]. For exam-991
ple, the Affective AutoTutor is an intelligent tutoring system that improves learning992
gains for low domain-knowledge students by automatically sensing (via a MM anal-993
ysis of contextual cues, facial features, and body movements) and responding to con-994
fusion, frustration, and boredom [D’Mello and Graesser 2012]. UNC-ITSPOKE is a995
speech-enabled intelligent tutoring system that automatically senses and responds to996
a learner’s uncertainty by modeling acoustic-prosodic and lexical features of students’997
spoken responses [Forbes-Riley and Litman 2011]. Another example is the Affective998
Music Player, which strategically selects music to induce specific moods (positive, neg-999
ative, neutral) on a personalized basis via a predictive psychophysiological model [van1000
der Zwaag et al. 2013]. In general, systems that both sense and respond to affect are1001
continually emerging as documented in a recent edited volume on affective computing1002
[Calvo et al. 2014].1003

Despite impressive progress, one limitation of most (but not all of these systems)1004
is that they have been tested in lab-based contexts (the Affective Music player is an1005
exception). Hence, the challenge is now to repudiate critics who think that affective1006
systems will forever be resigned to the confines of the lab and will never make it into1007
real-world applications. This will require a concentrated effort to export affect detection1008
out of the lab and into the wild, where one must contend with the dynamic nature and1009
unpredictability of the real world. It is our hope that this will be reflected in the next1010
review of multimodal affect detectors.1011
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F. Eyben, M. Wöllmer, A. Graves, B. Schuller, E. Douglas-Cowie, and R. Cowie. 2010. On-line emotion1105

recognition in a 3-D activation-valence-time continuum using acoustic and linguistic cues. J. Multimodal1106
User Int. 3, 7–19.1107

F. Eyben, M. Wollmer, M. F. Valstar, H. Gunes, B. Schuller, and M. Pantic. 2011. String-based audiovisual1108
fusion of behavioural events for the assessment of dimensional affect. In Ninth IEEE International1109
Conference on Automatic Face and Gesture Recognition (FG 2011). IEEE, Santa Barbara, CA, 322–329.1110

J. Fontaine, K. Scherer, E. Roesch, and P. Ellsworth. 2007. The world of emotions is not two-dimensional.1111
Psychol. Sci. 18, 12 (Dec. 2007) 1050–1057.Q61112

K. Forbes-Riley and D. Litman. 2004. Predicting emotion in spoken dialogue from multiple knowledge1113
sources. In Proceedings of the 4th Meeting of the North American Chapter of the Association for Compu-1114
tational Linguistics: Human Language Technologies, 201–208.1115

K. Forbes-Riley and D. J. Litman. 2011. Benefits and challenges of real-time uncertainty detection and1116
adaptation in a spoken dialogue computer tutor. Speech Commun. 53, 1115–1136.1117

R. Gajsek, V. Struc, and F. Mihelic. 2010. Multi-modal emotion recognition using canonical correlations and1118
acoustic features. In Proceedings of the 20th International Conference on Pattern Recognition. IEEE,1119
Washington, DC, 4133–4136.1120

M. Glodek, S. Reuter, M. Schels, K. Dietmayer, and F. Schwenker. 2013. Kalman filter based classifier fusion1121
for affective state recognition. In Proceedings of the 11th International Workshop on Multiple Classifier1122
Systems, Z.-H. Zhou, F. Roli, and J. Kittler (Eds.). Springer, Berlin, 85–94.1123

M. Glodek, S. Tschechne, G. Layher, M. Schels, T. Brosch, S. Scherer, M. Kächele, M. Schmidt, H. Neumann,1124
and G. Palm. 2011. Multiple classifier systems for the classification of audio-visual emotional states. In1125
4th International Conference on Affective Computing and Intelligent Interaction (ACII’11), S. D’Mello, A.1126
Graesser, B. Schuller, and J. Martin (Eds.). Springer, Memphis, TN, 359–368.1127

S. Gong, C. Shan, and T. Xiang. 2007. Visual inference of human emotion and behaviour. In Proceedings of1128
the 9th International Conference on Multimodal Interfaces. ACM, New York, NY, 22–29.1129

ACM Computing Surveys, Vol. 47, No. 3, Article 43, Publication date: January 2015.



CSUR4703-43 ACM-TRANSACTION January 7, 2015 15:20

A Review and Meta-Analysis of Multimodal Affect Detection Systems 43:33

A. Graesser, B. McDaniel, P. Chipman, A. Witherspoon, S. D’Mello, and B. Gholson. 2006. Detection of 1130
emotions during learning with AutoTutor. In Proceedings of the 28th Annual Conference of the Cognitive 1131
Science Society, R. Sun and N. Miyake (Eds.). Cognitive Science Society, Austin, TX, 285–290. 1132

H. Gunes and M. Piccardi. 2005. Fusing face and body display for bi-modal emotion recognition: Single 1133
frame analysis and multi-frame post integration. In Proceedings of the 1st International Conference on 1134
Affective Computing and Intelligent Interaction (ACII’05), J. Tao and R. Picard (Eds.). Springer-Verlag, 1135
102–111. 1136

H. Gunes and M. Piccardi. 2009. Automatic temporal segment detection and affect recognition from face and 1137
body display. IEEE Trans. Syst., Man, Cybern. Part B Cybern. 39, 64–84. 1138

M. Han, J. Hsu, K.-T. Song, and F.-Y. Chang. 2007. A new information fusion method for SVM-based robotic 1139
audio-visual emotion recognition. In Proceedings of the IEEE International Conference on Systems, Man 1140
and Cybernetics. IEEE, Washington, DC, 2656–2661. 1141

S. Haq and P. Jackson. 2009. Speaker-dependent audio-visual emotion recognition. In Proceedings of Inter- 1142
national Conference on Auditory-Visual Speech Processing, 53–58. 1143

S. Haq, P. Jackson, and J. Edge. 2008. Audio-visual feature selection and reduction for emotion classification. 1144
In Proceedings of the International Conference on Auditory-Visual Speech Processing, 185–190. 1145

S. Hoch, F. Althoff, G. McGlaun, and G. Rigoll. 2005. Bimodal fusion of emotional data in an automotive 1146
environment. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal 1147
Processing. IEEE, Washington, DC, 1085–1088. 1148

S. Hommel, A. Rabie, and U. Handmann. 2013. Attention and emotion based adaption of dialog systems. In 1149
Intelligent Systems: Models and Applications, E. Pap (Ed.). Springer-Verlag, Berlin, 215–235. 1150

M. Hoque and R. W. Picard. 2011. Acted vs. natural frustration and delight: Many people smile in natu- 1151
ral frustration. In Proceedings of the IEEE International Conference on Automatic Face and Gesture 1152
Recognition and Workshops (FG’11). IEEE, Washington, DC, 354–359. 1153

M. Hussain, H. Monkaresi, and R. Calvo. 2012. Combining classifiers in multimodal affect detection. In 1154
Proceedings of the Australasian Data Mining Conference. 1155

C. Izard. 2010. The many meanings/aspects of emotion: Definitions, functions, activation, and regulation. 1156
Emotion Rev. 2, 363–370. 1157

C. E. Izard. 2007. Basic emotions, natural kinds, emotion schemas, and a new paradigm. Perspect. Psychol. 1158
Sci. 2, 260–280. 1159

A. Jaimes and N. Sebe. 2007. Multimodal human-computer interaction: A survey. Comput. Vision Image 1160
Understanding 108, 116–134. 1161

L. Jeni, J. Cohn, and F. De La Torre. 2013. Facing imbalanced data—Recommendations for the use of 1162
performance metrics. In Proceedings of the 2013 Humaine Association Conference on Affective Computing 1163
and Intelligent Interaction (ACII’13), A. Nijholt, S. K. D’Mello, and M. Pantic (Eds.). IEEE, Washington, 1164
DC, 245–251. 1165

D. Jiang, Y. Cui, X. Zhang, P. Fan, I. Ganzalez, and H. Sahli. 2011. Audio visual emotion recognition based 1166
on triple-stream dynamic bayesian network models. In Proceedings of the 4th International Conference 1167
on Affective Computing and Intelligent Interaction, S. D’Mello, A. Graesser, B. Schuller, and J. Martin 1168
(Eds.). Springer-Verlag, 609–618. 1169

J.-T. Joo, S.-W. Seo, K.-E. Ko, and K.-B. Sim. 2007. Emotion recognition method based on multimodal sensor 1170
fusion algorithm. , 200–204. Q71171

C. Kaernbach. 2011. On dimensions in emotion psychology. In Proceedings of the IEEE International Confer- 1172
ence on Automatic Face and Gesture Recognition and Workshops. IEEE, Washington, DC, 792–796. 1173

I. Kanluan, M. Grimm, and K. Kroschel. 2008. Audio-visual emotion recognition using an emotion space 1174
concept. In Proceedings of the 16th European Signal Processing Conference. 1175

A. Kapoor, B. Burleson, and R. Picard. 2007. Automatic prediction of frustration. Int. J. Hum.Comput. Stud. 1176
65, 724–736. 1177

A. Kapoor and R. Picard. 2005. Multimodal affect recognition in learning environments. In Proceedings of 1178
the 13th annual ACM International Conference on Multimedia. ACM, New York, NY, 677–682. 1179

K. Karpouzis, G. Caridakis, L. Kessous, N. Amir, A. Raouzaiou, L. Malatesta, and S. Kollias. 2007. Modeling 1180
naturalistic affective states via facial, vocal, and bodily expressions recognition. In Artifical Intelligence 1181
for Human Computing, T. Huang (Ed.). Springer-Verlag, Berlin, 91–112. 1182

L. Kessous, G. Castellano, and G. Caridakis. 2010. Multimodal emotion recognition in speech-based interac- 1183
tion using facial expression, body gesture and acoustic analysis. J. Multimodal User Int. 3, 33–48. 1184

Z. Khalali and M. Moradi. 2009. Emotion recognition system using brain and peripheral signals: Using 1185
correlation dimension to improve the results of EEG. In Proceedings of International Joint Conference 1186
on Neural Networks. IEEE, Los Alamitos, CA, 1571–1575. 1187

ACM Computing Surveys, Vol. 47, No. 3, Article 43, Publication date: January 2015.



CSUR4703-43 ACM-TRANSACTION January 7, 2015 15:20

43:34 S. K. D’mello and J. Kory

J. Kim. 2007. Bimodal emotion recognition using speech and physiological changes. In Robust Speech Recog-1188
nition and Understanding, M. Grimm and K. Kroschel (Eds.). I-Tech, 265–280.1189
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F. Lingenfelser, J. Wagner, and E. André. 2011. A systematic discussion of fusion techniques for multi-modal1210
affect recognition tasks. In Proceedings of the 13th International Conference on Multimodal Interfaces.1211
ACM, New York, NY, 19–26.1212

M. W. Lipsey and D. B. Wilson. 2001. Practical meta-analysis. Sage Publications, Inc, Thousand Oaks, CA.1213
D. Litman and K. Forbes-Riley. 2004. Predicting student emotions in computer-human tutoring dialogues.1214

In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics. Association1215
for Computational Linguistics, Barcelona, Spain, 352–359.1216

D. Litman and K. Forbes-Riley. 2006a. Recognizing student emotions and attitudes on the basis of utterances1217
in spoken tutoring dialogues with both human and computer tutors. Speech Commun. 48, 559–590.1218

D. J. Litman and K. Forbes-Riley. 2006b. Recognizing student emotions and attitudes on the basis of ut-1219
terances in spoken tutoring dialogues with both human and computer tutors. Speech Commun. 48,1220
559–590.1221

K. Lu and Y. Jia. 2012. Audio-visual emotion recognition with boosted coupled HMM. In Proceedings of the1222
21st International Conference on Pattern Recognition. IEEE, Washington, DC, 1148–1151.1223

M. Mansoorizadeh and N. Charkari. 2010. Multimodal information fusion application to human emotion1224
recognition from face and speech. Multimedia Tools Appl. 49, 277–297.1225

D. McDuff, R. Kaliouby, and R. W. Picard. 2012. Crowdsourcing facial responses to online videos. IEEE Trans.1226
Affective Comput. 3, 456–468.1227

G. McKeown, M. Valstar, R. Cowie, M. Pantic, and M. Schroder. 2012. The SEMAINE database: Annotated1228
multimodal records of emotionally coloured conversations between a person and a limited agent. IEEE1229
Trans. Affective Comput. 3, 5–17.1230

A. Metallinou, S. Lee, and S. Narayanan. 2008. Audio-visual emotion recognition using Gaussian mixture1231
models for face and voice. In Proceedings of the 10th IEEE International Symposium on Multimedia.1232
IEEE, Washington, DC, 250–257.1233

A. Metallinou, M. Wollmer, A. Katsamanis, F. Eyben, B. Schuller, and S. Narayanan. 2012. Context-sensitive1234
learning for enhanced audiovisual emotion classification. IEEE Trans. Affective Comput. 3, 184–198.1235

H. Monkaresi, M. S. Hussain, and R. Calvo. 2012. Classification of affects using head movement, skin color1236
features and physiological signals. In Proceedings of the IEEE International Conference on Systems,1237
Man, and Cybernetics. IEEE, Washington, DC, 2664–2669.1238

M. Nicolaou, H. Gunes, and M. Pantic. 2011. Continuous prediction of spontaneous affect from multiple cues1239
and modalities in valence and arousal space. IEEE Trans. Affective Comput. 2, 92–105.1240

J. Ocumpaugh, R. Baker, S. Gowda, N. Heffernan, and C. Heffernan. 2014. Population validity for educational1241
data mining: A case study in affect detection. Brit. J. Educ. Psychol. 45, 487–501.1242

A. Ortony, G. Clore, and A. Collins. 1988. The Cognitive Structure of Emotions. Cambridge University Press,1243
New York.1244

ACM Computing Surveys, Vol. 47, No. 3, Article 43, Publication date: January 2015.



CSUR4703-43 ACM-TRANSACTION January 7, 2015 15:20

A Review and Meta-Analysis of Multimodal Affect Detection Systems 43:35

P. Pal, A. Iyer, and R. Yantorno. 2006. Emotion detection from infant facial expressions and cries. In Pro- 1245
ceedings. of the 2006 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 1246
Washington, DC, 721–724. 1247

M. Paleari, R. Benmokhtar, and B. Huet. 2009. Evidence theory-based multimodal emotion recognition. 1248
In Proceedings of the 15th International Multimedia Modeling Conference (MMM’09). Springer-Verlag, 1249
435–446. 1250

B. Pang and L. Lee. 2008. Opinion mining and sentiment analysis. Found. Trends Inf. Retrieval 2, 1–135. 1251
M. Pantic and L. Rothkrantz. 2003. Toward an affect-sensitive multimodal human-computer interaction. 1252

Proc. IEEE 91, 1370–1390. 1253
J. Park, G. Jang, and Y. Seo. 2012. Music-aided affective interaction between human and service robot. 1254

EURASIP J. Audio, Speech, Music Process. 2012, 1, 1–13. 1255
R. Picard. 1997. Affective Computing. MIT Press, Cambridge, Mass. 1256
R. Picard. 2010. Affective Computing: From Laughter to IEEE. IEEE Trans. Affective Comput. 1, 11–17. 1257
R. Plutchik. 2001. The nature of emotions. American Scientist 89, 344–350. 1258
A. Rabie, B. Wrede, T. Vogt, and M. Hanheide. 2009. Evaluation and discussion of multi-modal emotion recog- 1259

nition. In Proceedings of the Second International Conference on Computer and Electrical Engineering 1260
(ICCEE’09). IEEE Computer Society, 598–602. 1261

M. Rashid, S. Abu-Bakar, and M. Mokji. 2012. Human emotion recognition from videos using spatio-temporal 1262
and audio features. Visual Comput. 29, 12, 1269–1275. Q81263

G. Rigoll, R. Muller, and B. Schuller. 2005. Speech emotion recognition exploiting acoustic and linguistic 1264
information sources. In Proceedings of the 10th International Conference Speech and Computer. 61–67. 1265

V. Rosas, R. Mihalcea, and L. Morency. 2013. Multimodal sentiment analysis of spanish online videos. IEEE 1266
Intell. Syst. Q91267

E. Rosenberg. 1998. Levels of analysis and the organization of affect. Rev. Gen. Psychol. 2, 247–270. 1268
E. Rosenberg and P. Ekman. 1994. Coherence between expressive and experiential systems in emotion. 1269

Cognition Emotion 8, 201–229. 1270
V. Rozgic, S. Ananthakrishnan, S. Saleem, R. Kumar, and R. Prasad. 2012. Ensemble of SVM trees for 1271

multimodal emotion recognition. In Proceedings of the Signal and Information Processing Association 1272
Annual Summit and Conference. IEEE, Washington, DC, 1–4. 1273

J. Russell. 1994. Is there universal recognition of emotion from facial expression? A review of the cross- 1274
cultural studies. Psychol. Bull. 115, 102–141. 1275

J. Russell. 2003. Core affect and the psychological construction of emotion. Psychol. Rev. 110, 145–172. 1276
J. A. Russell, J. A. Bachorowski, and J. M. Fernandez-Dols. 2003. Facial and vocal expressions of emotion. 1277

Ann. Rev. Psychol. 54, 329–349. 1278
A. Savran, H. Cao, M. Shah, A. Nenkova, and R. Verma. 2012. Combining video, audio and lexical indicators 1279

of affect in spontaneous conversation via particle filtering. In Proceedings of the 14th ACM International 1280
Conference on Multimodal Interaction. ACM Press, New York, NY, 485–492. 1281

B. Schuller. 2011. Recognizing affect from linguistic information in 3D continuous space. IEEE Trans. Affec- 1282
tive Comput. 2, 192–205. 1283
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