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Abstract

Any agent that functions successfully in a constantly changing world must be able to 

adapt its behavior to its current situation. In biological organisms, emotion is often highlighted 

as a crucial system for generating adaptive behavior. This paper presents a biologically-inspired 

predator-prey model to investigate the effectiveness of an emotion-like system in guiding the 

behavior of artificial agents, implemented in a set of simulated robots. The predator's behavior 

was governed by a simple subsumption hierarchy; the prey selected actions based on direct 

sensory perceptions dynamically integrated with information about past motivational/emotional  

states. Aspects of the prey's emotion system were evolved over time. The first study examined 

the interactions of a single prey with the predator, indicating that having an emotion system can 

led to more diverse behavioral patterns, but may not lead to optimal action selection strategies.  

In the second study, groups of prey agents were evolved. These agents began to utilize alarm 

signaling and displayed fear contagion, with more group members surviving than in groups of 

emotionless prey. These results point to the pivotal role emotion plays in social scenarios. The 

model adds to a critical body of research in which important aspects of biological emotion are 

incorporated into the action selection mechanisms of artificial agents to achieve more adaptive,  

context-dependent behavior.
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1. Introduction

In many artificial and robotic systems, inspiration is drawn from the emotion and animal 

communication literature to get more flexible and adaptive behavior. Examples can be seen in  

both autonomous robots (e.g., Arkin, 2005; Hasson & Gaussier, 2010; Lee-Johnson & 

Carnegie, 2007; Miachaud & Audet, 2001; Murphy, Lisetti, Tardif, Irish, & Gage, 2002; and 

Parisi & Petrosino, 2010) and in many human-robot interaction studies as a way of better 

enabling humans to interact with the artificial agents (e.g., Arkin, Fujita, Takagi, & Hasegawa, 

2003; Bruce, Nourbakhsh & Simmons, 2002; Castellano, Aylett, Paiva, & McOwan, 2008; and 

Murray & Cañamero, 2009). Emotions, in biological organisms, are often defined as a system 

that aids in behavior regulation and control, e.g., for choosing between mutually incompatible 

actions and then preparing the organism's body to perform the selected action (Tooby & 

Cosmides, 2008). Researchers build models of emotions that are functionally equivalent to 

portions of biological emotion systems in order to bias reactions and promote the generation of 

behavior tuned to environmental conditions and appropriate to the agent's goals, whether the 

goals are survival-oriented as is true for many biological creatures, or whether the goals are 

specific to some other kind of task, such as the cooperative serving of finger food (see, e.g., 

Murphy et al., 2002). 

Emotions are also involved in signaling and communication. Some researchers suggest 

that one way of understanding animal signals is to treat them as expressions of affective states 

that then induce some particular affective state in the receivers of the signal, influencing the 

future behavior of the receiver in a way that is, on average, beneficial to the signaler (Bradbury 

& Vehrencamp, 1998; Krebs & Dawkins, 1984). Signals may be exchanged about salient 

information in the animals' environments, such as the presence of a predator (Seyfarth & 

Cheney, 2003), a state of distress (Ciani, 2000), or a desire to mate (Rendall, Owren, & Ryan, 

2009). Models of animal communication can also be incorporated into artificial agents, again 

with the goal of generating more adaptive behavior (see, e.g., Jim & Giles, 2000; Loula, 

Gudwin, El-Hani, and Queiroz, 2010;  Weitzenfeld, 2008).

Here, I will explore what emotions are, both in biological organisms as well as what it 
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would mean for an artificial agent to have emotions and how emotions could be useful to an 

artificial agent (Sections 2.1-2.3). Because of the importance of communication to this study, I  

will discuss signaling in groups of biological organisms (Section 2.4) and how communication 

systems are implemented in groups of artificial agents (Section 2.5). I will then present the 

biologically-inspired predator-prey model I have developed, which is designed to examine the 

effectiveness of an emotion-like system in guiding behavior and the utility of affective 

signaling in groups. This model is implemented first in a single prey agent (Section 3) and 

subsequently in a group of prey agents (Section 4). A general discussion and conclusions follow 

(Sections 5 & 6).
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2. Theoretical background

2.1. What is emotion?

One obtrusive problem with the word “emotion” is the connotation of feeling. In 

accordance with Damasio (1999; 2010), here I take the stance that feelings are not emotions: 

feelings are perceptions of emotions – perceptions of what is happening within one's body and 

mind during the emoting. One must have emotions to have feelings, but being aware of one's 

emotions is not a requirement for having them in the first place. Jerome Kagan, in his book 

What Is Emotion? (2007), withholds the title “emotion” from any phenomena in organisms that 

do not have the symbolic appraisal of sensory states that he thinks is necessary to emotion, but 

this seems an unneeded distinction, falling too far toward equating emotions with feelings. 

Restricting one's definition of emotion to those organisms aware of their emotions is not 

particularly useful (except in the case of needing a perfect synonym for “feeling”), since there 

is no feasible way to determine which organisms are aware of their emotions.

As such, emotions are usually defined as a system that aids in behavior regulation and 

control (e.g., see Arkin, 2005; Bekoff, 2000; Damasio, 2010; and Tooby & Cosmides, 2008). 

Both Arkin (2005) and Bekoff (2000) point out that “emotion” is a nebulous term – no single 

theory has yet captured the full extent of the complexity of emotions. Some strict behaviorists  

reject any discussion of emotions and mental states altogether, since emotions consist at least in 

part of unobservable phenomena that cannot produce what they think is “proper” scientific data 

(Bekoff, 2000). More often, however, researchers align themselves approximately with the 

theories presented by Damasio (2010) and Tooby and Cosmides (2008).

Damasio's (2010) definition is broad, asserting that emotions are complex, largely 

automated patterns of response, used to regulate the organism's internal state in order to prepare 

specific reactions to specific environmental cues. They are a high-level life-regulation system. 

His definition encompasses value systems, reward and punishment devices, drives and 

motivations, and “proper” emotions such as sadness, fear, disgust, and joy. Arbib and Fellous 

(2004) and Smith (2004) agree that emotions are evoked in response to particular harms and 

benefits in the organism's environment, with the purpose of regulating internal states and 
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affecting behavior, without explicitly mentioning whether emotion is a subset of or has a 

subsets including motivation, value systems, and the rest.

Tooby and Cosmides (2008) present a concurring argument to Damasio's: emotions are 

“programs” that coordinate action within one's body, directing pieces such as behaviors, 

reflexes, attention, and effort allocation. Most organisms encounter similar situations time and 

time again; it is beneficial for the organism to be able to recognize a recurring situation and to  

direct its body to prepare in specific ways in response. In addition, organisms must have a 

mechanism for choosing between mutually incompatible actions, such as sleeping and fleeing 

from a predator, and then coordinating the response of the organism's body for executing the 

chosen action. Tooby and Cosmides (2008) suggest that emotions are this mechanism, a bet 

about what internal actions will be most advantageous in the long-term, given the present 

uncertain circumstances.

Both Damasio (2010) and Tooby and Cosmides (2008) place emotion in a key role in 

the determination and coordination of behavior, but their definitions leave something to be 

desired. As Dawkins (2000) explains, many functional definitions of emotion are so general 

that they encompass too much behavior – including the behavior of plants operating without 

nervous systems. She describes in particular Oatley and Jenkins' (1998) appraisal theory of 

emotion in relation to a study by Kelly (1992) of the growth of a parasitic plant onto Hawthorn 

bushes. Oatley and Jenkins' (1998) theory proposes that emotions are composed of appraisal of 

the situation, action readiness, and physiological changes and the execution of action. In Kelly's 

(1992) study, pieces of the parasite were seen to grow away from Hawthorne bushes that had 

been starved of nutrients, and towards bushes that had been fed extra nutrients, thus displaying 

– over the course of several hours – appraisal of the food source, action readiness, and the 

execution of action in growing toward or away the bush. Although Damasio (2010) and Tooby 

and Cosmidies (2008) do take a little more care with their definitions, it could be argued that 

even a plant has some mechanism for choosing between incompatible actions – such as 

growing one direction versus another – and readying itself to act.

Arkin (2005) and Parisi and Petrosino (2010) take a different view of emotion: their 

definitions are still functional, but have finer-grained delineations, naming motivation and 

separating this phenomenon out from emotion. Motivations can be discussed without reference 
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to emotion. In an organism, motivations are states in which the organism is willing to work to 

gain a reward or to avoid a punisher (Rolls, 2005). This excludes simple reflexes – motivations 

are states that may evoke specific behaviors to accomplish particular goals (Arkin, 2005). 

Emotions, on the other hand, are a specialized sub-mechanism of motivational behavior, states 

of the organism's body and brain that change the intensity of different motivations, modulating 

existing behavior rather than leading to the formulation of concrete, goal-achieving behavior.

Both motivation and emotion exist on a strategic level of behavior rather than a merely 

reactive level; they are often confused. Rolls (1999, 2005) has two well-known books on 

emotion that are, in fact, primarily about motivation, as Parisi and Petrosino (2010) point out.  

Rolls (2005) claims that emotions are states elicited by rewards and punishers – side-effects, 

not mechanisms for influencing motivation at all. In contrast, the definition I am taking here 

keeps emotion in a key if indirect role in behavior determination – emotions are adaptive,  

survival-promoting processes (Panksepp, 1998). They influence the appropriateness and 

effectiveness of the motivations driving behavior, allowing the organism to make motivational 

decisions more quickly (Parisi & Petrosino, 2010). They are important to determining what 

information in the environment to attend to given the current circumstances, and may lead to 

more flexible learning and reasoning (Evans, 2002).

2.2. Emotion in biological organisms

Most of the emotion research controversy comes in when we start talking about which 

organisms have emotions and whether artificial agents could ever have emotions. Bekoff 

(2000) suggests that we can make strong interferences about emotional states in many 

organisms based on features such as posture, facial expressions, and vocalizations, but this 

presupposes that only a single mechanism – some kind of emotion system – could give rise to 

those particular displays of behavior. Much human-robot interaction (HRI) research is centered 

around the very idea that one can achieve emotion-like behavior in an artificial agent without  

the agent having anything like what we would deem emotions in a biological organism. Having 

such behavior in the agent helps humans relate to the agent in natural ways, which is 

particularly important to, e.g., the entertainment robotics sector (Arkin et al., 2003). That said,  
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indirect evidence about the affective states of any creature other than our own self is all we 

have, and can in many cases provide the kind of strong inferences to which Bekoff (2000) 

refers.

Dawkins (2000) proposes two methods of studying animal emotions, both based on the 

idea that we can and do know something about human emotions: 1) functionally, by looking at 

whether the role of emotions in non-human behavior is similar to that we see in humans, and 2) 

mechanistically, by examining whether the physiological mechanisms underlying emotions are 

similar in non-humans and in humans. Dawkins (2000) described several ways we get 

information about human emotions – verbal reports about perceived emotions; measurements 

of automatic changes such as heart rate, temperature, and galvanic skin response; and 

observations of behavior and expressions – and suggests that we can use the latter two for 

studies of emotion in non-human organisms. She noted that these measures are not, in general, 

correlated – e.g., sometimes an automatic response is measured, but no subjective experience is 

reported. Furthermore, there can be multiple causes for any particular observed reaction, such 

as an increased heart rate as a result of either fear or sexual arousal. This makes it difficult to 

look at emotion analogs in humans and non-humans: how do we know if  what we are looking 

at is, in fact, an analog?

Dawkins' (2000) solution is unsatisfactory: she claims that certain anticipatory 

mechanisms may require emotions, and thus, organisms with those mechanisms by necessity 

have emotions. Specifically, she stipulates that emotions are necessary for an organism to know 

whether a behavior never performed before ought to be repeated, arguing that organisms 

capable of reinforcement learning must have a reward-punishment system, which she names 

emotion. When an organism can learn to perform an arbitrary response to some stimulus, that 

response cannot be hard-wired in. She notes that receptors can be linked directly to response 

mechanisms, so mere habituation to some repeated experience is not enough. Although this is a 

nice story about emotion's adaptiveness in novel situations, Dawkins (2000) fails to 

acknowledge or explain the utility of emotions in any other circumstance, and furthermore, 

fails to uncover any other useful ways of investigating animal emotions. The fact that she goes 

on to equate emotion to cognition does not help her case.

Most other researchers, through studies of neuroanatomy, neurophysiology, and 
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behavior, recognize some level of emotion in many biological creatures – most often, the 

capacity for fear and pain, since these are most easily seen as adaptive and useful to an 

organism's daily survival. Panksepp's (1998) book Affective Neuroscience is a much-cited 

source. He accepts that it is a difficult subject – asking, as an exemplar question, whether 

courting finches in the Galápagos have emotional experiences, or whether their actions mere 

fixed-action patterns –  and reminds us that such methods as fMRIs and behavioral brain 

research across species and levels now go a great distance toward understanding systems of 

emotion in both humans and non-humans. He states affirmatively that all mammals have 

emotions; other researchers, such as Chandroo, Duncan, and Moccia (2004), propose that birds 

and even fish have some emotion. Chandroo et al. (2004) analyzed whether fish can suffer, 

investigating functionally comparable regions of the fish brain in relation to tetrapod brains.  

They noted that the limbic system and some dopaminergic neural systems have been associated 

with emotion in tetrapods (these systems are consistently implicated – see the discussion in 

Ledoux and Phelps, 2008), and the telencephalon in fish is comparable – e.g., lesions or 

stimulation of the amygdalar region in the telencephalon produce aggression changes in fish 

similar to those in tetrapods, and lesions of the telencephalon in goldfish affected spatial and 

associative learning in the same way as hippocampal lesions in tetrapods. Some researchers, 

such as Preston and de Waal (2002) go farther, arguing that animals not only have emotions, but 

also empathy. They cite studies of rats and pigeons in which subjects showed distress when a 

shock was administered to an adjacent animal, claiming that this showed both rats and pigeons 

are emotionally connected to their conspecifics. This conclusion conflates the significance of 

the animals' reactions – the distress seen could merely be an automatic reaction to seeing a 

conspecific in distress, since it may be adaptive to one's survival to react fearfully when a 

nearby rat or pigeon is already acting fearfully. Regardless, the general consensus in the 

literature is that many animals have emotions, and that emotions are particularly adaptive to  

have.
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2.3. Emotion in artificial agents

Emotion modeling, as a general category, can cover a wide range of models, including 

some that generate emotion-like expressions or gestures in agents, use the effects of emotions 

for decision-making and action planning, or use information about a user's emotions, e.g., for 

games and tutoring programs (Hudlicka, 2008). Here, I am specifically interested in the use of 

emotion-like systems in the second category – the generation of more flexible and adaptive 

behavior in autonomous robots. As was discussed in Section 2.1, I am considering emotion to 

be an adaptive system that, given specific environmental situations, helps coordinate 

appropriate behaviors by influencing motivation – I am setting aside the matter of feeling for 

another debate entirely. Since we do not build bodies for robots from living cells, obviously, no 

emotion model or system built will be mechanistically equivalent to that in a biological  

organism, but as Fellous (2004) points out, having a strong mechanistic understanding of 

biological emotions allows us to create functional equivalents, in the same way that having a 

mechanistic understanding of the human heart allowed artificial hearts to be built. MacLennon 

asks – if artificial emotion systems fulfill the same functions in robots that emotions do in 

biological organisms – whether we care what they're called – emotions, artificial emotions, 

programs?

If an emotion system will be meaningful to a robot, it must be grounded in a relevant 

internal value system, constituting a “second order” control mechanism that works in 

conjunction with a motivation system and action selection, monitoring the external and internal  

environments for significant events (Cañamero, 2005). Such systems are used in a few primary 

domains in robotics; Fellous (2004) outlines three: 1) communication between individuals, 2) 

resource mobilization and conservation, and the prioritization of behaviors, and 3) decoupling 

stimulus and response to allow for context-dependent computations. Numerous other 

researchers have similar lists (see, e.g., Lee-Johnson & Carnegie, 2007; and Miachaud & 

Audet, 2001); Rumbell, Barnden, Denham, & Wennekers (2010) add memory control, learning, 

and self models to the list.

Rumbell et al. (2010) suggest that, when implementing emotions in robots, two primary 

theories of emotion mechanisms are used. First, the theory that emotions can be classified into 
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a small set of discrete, “basic” emotions, based on identifiable functional roles. Second, that  

emotions are dimensional, composed of the interacting output of some number of fundamental 

components. Different emotions are simply particular points in a multi-dimensional emotion 

space; the problem with this is that it is easy to miss interesting features of emotion.

Miachaud and Audet (2001) use a dimensional model and place emphasis on emotion's 

role in managing social behavior. Their study placed a pair of robots in an arena with the goal 

of performing a long-term foraging task. The robots needed to periodically recharge at a 

charging station. The robots have a two-dimensional bipolar model of four “emotions” as a way 

of monitoring the accomplishment of their goals over time – being low on energy would, e.g., 

increase “fear” because the robot was operating in dangerous conditions. The robots could 

communicate their general affective state to each other; this information was used to coordinate 

the accomplishment of the task and the long-term survival of the pair via cooperative use of the 

recharging station.

Lee-Johnson and Carnegie (2007) implemented a model similar to that of Miachaud and 

Audet's (2001), but instead of a dimensional model, used five basic “emotions” that were linked 

to specific kinds of events. E.g., “fear” was associated with damage to the robot, and 

“happiness” was associated with robot achieving its goal. The robot's task was to navigate from 

location to location in an unknown environment, using subtasks such as learning about its 

environment and obstacle avoidance, and a hierarchical reactive/deliberation for action 

selection. Lee-Johnson and Carnegie (2007) evaluated the robot's performance with and 

without the artificial emotion system, concluding that the inclusion of the system improved the 

robot's adaptive performance.

Some researchers have moved away from explicitly basic or dimensional emotion 

models, using emotion systems for learning and memory. Velásquez (1998) built a model with a 

drive system, representing actions the agent might be motivated to take, and an emotional 

system, implemented as an associative network that influenced action selection. The network 

used a modified Hebbian rule to form “emotional” memories related to the actions taken and 

their results. Yu and Xu (2004) also implemented an associative network, using a fuzzy logic 

model of emotion and reinforcement learning to get “emotional” memories of actions and 

relevant situations. Hasson and Gaussier (2010) built an amygdala-inspired neural network that 
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learned the conditioning of a sensor using internal “pain” and “pleasure” states; the network 

was then used for navigation.

Parisi and Petrosino (2010) have emphasized that only robots that have many competing 

motivations can ever be said to have emotions, because they purport that emotion is a 

submechanism that exists to help make more appropriate motivational decisions – this is 

congruous with the definition of emotion I am using here. Parisi and Petrosino (2010) discussed 

a series of simulated robots that each were given various competing motivations, such as 

consuming resources to maintain energy levels, avoiding a predator, or resting to heal physical 

damage. Information from sensory devices and about the robot's internal state were input to a 

neural network, which directly controlled the robot's motors. They added an emotion circuit to 

the network; the emotion units received input from relevant sensors (e.g., about the predator's 

location if the robot was in a scenario with a predator to avoid) and fed into either the internal 

units of the network or directly to the motor units on the output layer. In both cases, adding the 

emotion circuit led to better motivational decisions and higher fitness.

Numerous researchers have begun to use emotion systems in groups of robots to aid in 

action selection and coordination within the entire group. Murphy et al. (2002), e.g., put an 

emotion system in a pair of robots that performed the asynchronous sequential task of serving 

hor d'oeuvres, with one serving the role of the waiter (serving food items) and one serving the 

role of refiller (bringing out trays of refills). The emotion system aided in action selection by 

modifying behavior via principles similar to homeostatic control, so if a robot was not making 

sufficient progress on a task, it might attempt to perform faster. It also aided in avoiding 

deadlock situations by escalating the robot's response, perhaps changing the robot's behavior 

altogether. Murphy et al. (2002) emphasized that their model only captured part of the many 

functions of biological emotions. The robots did not need to interpret or understand one 

another's “emotions” for the emotion systems to be beneficial to the accomplishment of their  

interdependent tasks.

Another multi-robot system was presented by Nozawa, Sato, and Ide (2005), which 

used  an emotion-inspired model of affinity/antipathy to build behavior rules for robot 

interaction. A robot with no obstacles in its path entered a “pleasure” state; if there were 

obstacles, it would enter a “non-pleasure” state. Four simulated robots were placed in an empty 
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arena; they would approach one another when in “pleasure” states and avoid one another when 

in “non-pleasure” states. When an attractor point – the robots' “destination” – was introduced to 

the arena, the approach-avoid behavior between robots led to general obstacle avoidance of 

walls when approaching the destination point. In a more complex environment, the “pleasure” 

fields resulting from the robots' movement could be used to draw environment maps. Nozawa 

et al. (2005) suggested that the emergent behavior seen was more flexible than the behavior that 

would have been generated by a central control mechanism. When implementing the same 

model in real robots in a later study, Kusano, Nozawa, and Ide (2008) suggested that it led to 

the emergence of burden sharing. The use of an emotion system can be beneficial both to 

agents acting individually and to agents that act as members of a group – even when the agents 

are not strictly aware of other group members' “emotions.”

2.4. Signaling

When talking about groups of agents, a key question is what kind of communication 

exists between those agents. Animal signals are well-studied – in biological organisms, signals 

are used by senders to affect and exploit the behavior of organisms receiving the signals in 

ways beneficial to the sender (Endler, 2000; Krebs & Dawkins, 1984). For both senders and 

receivers, signals serve to reduce uncertainty about other organisms' future behavior (Krebs & 

Dawkins, 1984). They provide reliable pieces of information about relations in the organism's 

environment that can be used to the organism's advantage (Bradbury & Vehrencamp, 1998; 

Endler, 2000). Signals are used to determine aspects of the sender's identity, such as social 

group, sex, or age, and to determine the sender's location; they are used in mate attraction, 

courtship, parent-offspring interactions, in aggressive encounters to signal intentions and 

commitment, and also to share information about conditions external to either the sender or the 

receiver, such as alarm signals to indicate the presence of a predator or other thread, or food 

signals to indicate the presence of a shareable food source (Bradbury & Vehrencamp, 1998). 

Rendall et al. (2009) are careful to point out that signals are not just about an exchange of 

information, however – it is the influence of a signal on another organism that matters. 
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Seyfarth and Cheney (2003) agree: senders rarely signal except in the presence of other 

organisms. The meaning and function of a signal may be very different from the point of view 

of a sender versus a receiver; they have potentially divergent interests and asymmetrical 

mechanisms for signal production and reception. 

Signals consist of two parts: content, the “what” that is being communicated, the piece 

of information being used by the receiver to make a decision about what action to make next,  

and some detectable and processable means that carry the content, such as light, sound, or 

chemicals (Endler, 2000). The best signals are tuned to the receiver's senses and are 

inexpensive to produce so they can be given many times – using, e.g., resonant structures or 

shorter signals with less structure. In addition, the environment can modify signals by adding 

noise or masking. E.g., the amplitude of an auditory signal is particularly sensitive to noise, 

since the amplitude of the received signal is the sum of the amplitudes of the signal and the 

noise, and a high noise level adds a high amplitude to the total sum. The best signals are in 

environments with the least amount of distortion and interference.

There is a careful balance in adaptive signaling between efficiency in communicating 

the message to the intended receiver and inefficiency at communicating to unintended receivers  

(Endler, 2000). Signals best avoid eavesdroppers when they match the background environment 

under the receiver's conditions, are only perceivable at close range, are non-repetitive, or have 

properties that allow certain environmental influences. E.g., guppies have strong red and orange 

courtship coloration in areas of the sea where they have a red-insensitive prawn predator, and 

blue coloration where one of their predators is the blue-insensitive cichlid; they also have a 

short courtship distance (Bradbury & Vehrencamp, 1998; Endler, 2000). Unfortunately, making 

a signal harder for eavesdroppers to detect also makes it harder for receivers to detect. Senders 

must balance the the conspicuousness of the signal, as well as the time and energy required for 

production, and physical constraints – e.g., a small body size constrains the intensity and 

transmission distance of visual signals (Bradbury & Vehrencamp, 1998).

The signal must also balance efficiency and content on the receiving end: a receiver's 

costs are reduced signals are reduced in complexity, or when complex signals are sent more 

slowly (Endler, 2000). The receiver must also balance the time to assess the signal, potential 

vulnerability if a close distance is required to perceive the signal, and numerous physical 
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constraints – e.g., body size constrains the effectiveness of determining the directionality of 

auditory signals (Bradbury & Vehrencamp, 1998). For all organisms involved, it is a matter of 

trade-offs.

As noted previously, an integral part of signaling is emotion. Emotions are crucial to 

communication and social coordination (Arbib & Fellous, 2004), acting to promote particular 

signal-producing behavior. E.g., Ciani (2000) studied how rage could signal to an opponent an 

affective state of distress, a warning that the situation could escalate into a physical conflict,  

influencing other organism's future actions. Rage, Ciani (2000) argued, is useful both in 

communicating the organism's state to others, and in preparing an organism for antagonistic 

actions. In dogs, e.g., curling the lips to expose teeth may aid in avoiding biting the lips when 

attacking; the accelerated heartbeat, similarly, may be useful in an oxygen-demanding attack  

action. Rage can give way to aggression, if the organism perceives that the opponent can be 

defeated, or fear, in preparation for submission or flight.

An emotion common to most organisms is fear, as discussed in Section 2.2. Fear 

reactions come into play when a threat to the organism is present – most prominently, the threat 

of being eaten by a predator. In many animal populations, this threat triggers an alarm signal.  

Alarm signal production tends to be reflexive, an affective reaction elicited by the detection of  

a predator or by a sound, such as the call of a conspecific (Seyfarth & Cheney, 2003). Bradbury 

and Vehrencamp (1998) distinguish three types of alarm signals, based on the kind of response 

elicited in conspecifics: 1) flee alarms, with a shorter range and generally harder to localize, are  

given to cause all receivers to avoid an attacking predator; 2) assembly alarms, with a longer 

range, are used to induce conspecifics to converge with the sender; and 3) alerting signals, often 

with a longer range as well, alert receivers to the presence of danger without inducing 

immediate action, and can also alert predators that they have been spotted. Sherman (1977) add 

that alarm signals may also function to divert a predator's attention to another prey and reduce 

the likelihood of later attacks by the same predator if that predator often returns to the same 

area. Some animals use more than one type of alarm signal – the type is generally dependent on 

the particular predator and the urgency of the situation (Seyfarth & Cheney, 2003).

Alarm signals are only found in relatively social species – they transmit information 

about presence of predator or rival, and their production depends heavily on the presence of 
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potential recipients (Bradbury & Vehrencamp, 1998; Seyfarth & Cheney, 2003). The perception 

of alarm calls may involve very different mechanisms than sending because of the subtle 

information that may be available regarding different predators or the urgency of the situation 

(Seyfarth & Cheney, 2003). Seyfarth and Cheney also note that most animals cannot distinguish 

the mental states of other animals – calls are not made intentionally to inform receivers and and 

receivers do not recognize that a signal reflects the sender's knowledge of a situation.

Sherman (1977) emphasized that producing alarm signals can be costly to an organism – 

it may reveal the signaler's location or the signaler's group's location to a predator. That said, 

alarm signals exist in many animal populations – vervet monkeys, ground squirrels, ring-tailed 

lemurs, and domestic roosters, to name a few – and so the benefits must outweigh the costs. 

Sherman (1977), after observing ground squirrels for thousands of hours and tabulating the 

circumstances of their alarm calls, argued that alerting kin to the presence of a threat was the 

primary function of ground squirrels' alarm calls. Females gave calls more frequently when 

relatives might hear; when they were surrounded by unrelated females, they refrained from 

calling. Females also called more frequently than males, and male squirrels with several mates 

with offspring called more frequently than males without. Bradbury and Vehrencamp (1998) 

also propose that most alarm signals are given when kin are among the receivers. Having kin 

survive may help in gene transmission to future generations.

2.5. Alarm signals in artificial agents

Numerous researchers have begun to develop biologically-inspired strategies of 

communication in groups of artificial agents. Loula et al. (2010) investigated emergent 

symbolic communication systems in groups of artificial agents, drawing heavily on the vervet 

monkey alarm call research of Seyfarth and Cheney. They built a simulated world populated by 

prey agents and predator agents. The behavior of these agents was determined by a hierarchical 

control architecture in which the action with the highest motivation was selected. Motivation 

was influenced by an emotion-like system of “drives” – such as hunger and tiredness – and 

actions included wandering, resting, and either chasing or fleeing. The prey also had drives for 
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fear, boredom, solitude, and curiosity, as well as actions for vocalizing, learning, following, and 

scanning, which in conjunction led to the prey to stay together so that communicative 

interactions would occur more frequently, and learn to associate vocalizations with predatory 

events. Four prey were put in an environment with three predators; the prey developed a self-

organized system of alarm calls that were functionally referent to predatory events. The fact 

that a system of alarm signals independently developed in the prey suggests that signaling 

about threats in the environment is beneficial to the prey's survival. 

Other artificial predator-prey models exist, but their focus has tended not to be on alarm 

signaling and emergent prey group behavior. Jim and Giles (2000) developed a model of four 

predator agents that communicated with one another to capture a single prey. In their 

simulation, each predator could “speak” a string of symbols, and could read all strings of 

symbols “spoken” by other predators before determining its next move. The predators' 

“language” was evolved over time using a genetic algorithm; predator performance improved 

when using the “language,” and more so when the number of possible messages that could be 

“spoken” was increased. Jim and Giles (2000) suggest that communication among agents is 

especially helpful in partially observable environments – that is, when agents have access to 

potentially different pieces of information about parts of the entire situation.

Weitzenfeld (2008) also investigated predator behavior, developing a prey catching and 

predator avoidance architecture based on a frog and praying mantis stimulus-response 

behaviors, both in simulation and with real robots. The behavior of each agent was controlled 

by a multi-level neural network and schema architecture. He extended this model using 

strategies from wolf pack group behaviors, creating a scenario in which several “beta” 

predators maintained a formation behind the “alpha” predator to pursue a prey.

Nolfi and Floreano's (1998) study had a different focus: Their goal was to examine the 

co-evolution of predator and prey agents over time, modeling the “arms race” of competing 

adaptations and levels of complexity. They placed one simulated predator and one simulated 

prey in an otherwise empty environment, each controlled by an artificial neural network, and 

used a genetic algorithm to evolve aspects of the network and strategies for survival. Floreano 

and Keller (2010) discuss in detail the benefits of taking an evolutionary approach to robotics, 

suggesting that evolving strategies of navigation, cooperation, and survival can lead to unique 
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an powerful solutions, particularly when there may be no single “right” combination of traits.

These predator-prey models, in conjunction with the research described in previous 

sections on emotion systems in groups of robots, the functions of emotion in biological 

organisms, and the uses of alarm signaling in biological organisms, have inspired the 

experiment described in Section 3. I have developed a novel action selection architecture – 

including an emotion system and capabilities for alarm signaling – for prey robots with a single 

predator.
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3. Study One

3.1. Overview

The purpose of this study was twofold: First, because a crucial assumption is that an 

emotion system is beneficial, to demonstrate that a prey agent with an emotion system is more 

fit than a prey agent without an emotion system – i.e., that having emotions is beneficial and 

increases the prey's lifespan. Second, to establish a baseline with the interactions of a single 

prey agent with a predator agent for later studies with multiple prey agents. A genetic algorithm 

was used to determine good values for the variables in the emotion and motivation equations 

for a prey agent with emotions. This agent's behavior and fitness was compared to an 

emotionless prey agent.

3.2. Methods

3.2.1. Initial simulations

The simulated robots were implemented in C# using Microsoft Robotics Studio and 

Microsoft Visual Studio .NET. A genetic algorithm, also implemented in C#, was run with just 

one prey agent and one predator agent in order to evolve appropriate thresholds for variables in 

the motivation and action-selection equations. Twenty trials were run per generation for sixty 

generations, the results of which were used to inform a second run of the genetic algorithm, 

with twenty trials per generation for twenty-five generations. Each trial consisted of 720 

timesteps of 250ms each for an overall trial time of three minutes; at each timestep, the prey 

and the predator calculated which action they would each perform next, as detailed below. Each 

predator-prey pair ran in its own simulation. Details of the genetic algorithm are provided 

below.

The four best prey agents from the second run of the genetic algorithm were determined 

based on fitness. These agents were compared to 1) prey agents acting in a predator-less 

environment, and 2) an emotionless prey agent.
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3.2.2. Comparison with predator-less prey agent

As a control and to establish a baseline lifespan, each of the best prey agents (as 

determined above) was tested without a predator in the environment. The hypothesis was that a 

prey without a predator would, on average, survive longer. Eighty trials, each consisting of 720 

timesteps of 250ms each, were run for each prey. In the first forty, both the predator and the 

prey were placed in an obstacle-free environment with their starting locations randomly 

determined. In the second forty, only the prey was placed in the environment. The predator 

could seek out the prey and attempt to attack; the prey could “eat” to maintain energy levels  

and move to avoid the prey, as is described in detail below.

3.2.3. Comparison with emotionless prey agent

To determine whether the addition of an emotion/motivation system was beneficial to 

the prey agent, forty trials of 720 timesteps of 250ms each were run for each of the best prey, 

and for an  emotionless prey agent. Again, both the predator and prey were placed in an 

obstacle-free environment with their starting locations randomly determined. The predator 

could seek out the prey and attempt to attack; the prey could “eat” to maintain energy levels  

and move to avoid the prey, as is described in detail below. The only difference between the 

emotion and the emotionless prey was that the emotionless prey did not have “fear” or 

“vigilance” modifying its action-selection function.

3.2.4. Genetic Algorithm

The genetic algorithm served the same function as evolution does for biological 

organisms: to select the individuals whose reactions to conditions and situations were relevant 

and beneficial (Floreano & Keller, 2010; Eiban & Smith, 2003). Individuals should react to 

recurring situations in a consistent, survival-oriented way, even if their behavior is often not so 

explicit. Each prey agent in the initial population was given a genome with randomly generated 
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values in a normal distribution with mean zero and a standard deviation of one, within a 

specified range for each gene (see Figure 3.1).

Each successive generation of prey agents was produced from the previous generation. 

After all trials in a generation had finished, the overall fitness of each prey agent was 

calculated: prey that survived the most number of timesteps were considered most fit. If two or 

more prey survived an equal number of timesteps, they were secondarily ranked based on their 

motivation, with prey that had lower hunger and lower fear during their lifetime ranked higher 

– this is a “quality of life” measure, in the vein of O'Bryne et al.'s (2009) fitness functions. A set 

of “parents,” used to produce eighty percent of the next generation, were selected based on 

these fitness values, using rank-based selection mapped to selection probability and stochastic 

universal sampling (for a detailed account of these algorithms, see, e.g., Eiban & Smith, 2003).

Pairs of parents were randomly selected from the parents pool to undergo recombination 

and mutation, thus allowing for the transfer of information between successful individuals. 

Whole arithmetic recombination occurred with eighty percent probability to create two 

offspring; otherwise, each parent's genome was copied asexually to produce the two offspring. 

Mutation of the offspring's genome occurred with probability one, at a rate in the range [0.1, 

0.35]. This mutation rate was also evolved, allowing for some self-adaptation of the genetic 

algorithm. It is often the case that different values of some evolutionary parameters are optimal  

at different points during the genetic algorithm's lifetime (Eiben & Smith, 2003).

The remaining twenty percent of the new generation were selected based on fitness 

from the previous generation. These “survivors” were copied whole and not altered or mutated.

The initial population of the second run had genomes randomly generated in a normal 

distribution with means informed by the best agents of the first run, and a standard deviation of 

one (see Figure 3.1). The first run was also used to inform the structure of the algorithm itself 

(e.g., the maximum rate of mutation). Results from the second genetic algorithm are discussed 

further in Section 3.3.
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3.2.5. Environment

The environment was a flat, textured plane 100 meters by 100 meters, bounded by walls 

that represented “rivers” and “mountains.” It contained one safe zone, denoted by a yellow 

patch on the plane, and twenty randomly distributed food patches, denoted by green patches. 

Because the transmission of visual signals can be improved by choosing different micro-

environments with different water absorbency or different light levels in order to maximize the 

radiance of the color patterns or maximize the difference between the color pattern and the 

background environment (Endler, 2000), the background environment was gray, and the 

lighting was relatively constant, thus simplifying the scenario (see Figure 3.5).

3.2.6. The agents

The predator and the prey each consisted of a robot with differential drive, bump 

sensors, infrared sensors, and a webcam. As a visual signal of which agents are of what 

“species,” both the predator and prey were color-coded: the predator was red; the prey was blue 

(as can be seen in Figure 3.5). This allowed for each agent to use color blob tracking to detect 

and track the other.

3.2.7. Predator behavior

The predator's behavior was controlled by a simple hierarchy: If a bump sensor was hit, 

avoid the obstacle by backing up and turning a random direction. Otherwise, search for the prey 

agent using both color blob tracking with the webcam and monitoring of any alarm messages 

the prey emitted, which would provide data on the prey's location (see Figure 3.6 for a 

schematic). The predator drove at a moderately slow speed during both these behaviors. If the 

prey was detected within a threshold distance, the predator would attack the prey at a faster 

speed. The predator's top speed was slower than the prey's top speed, but the predator 
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accelerated faster. This is consistent with biological data, as well as previous artificial predator-

prey scenarios, such as Nolfi and Floreano's (1998), in which they gave their prey a top speed 

twice that of the predator.

3.2.8. Prey behavior – with emotions

The prey's behavior is based on a winner-take-all action selection function, with an 

obstacle avoidance behavior subsuming all other behaviors (if a bump sensor was hit, the prey 

would back up and turn away from the obstacle). The prey was provided with a “safe zone,” 

based off the idea that many animals (e.g., rabbits, voles) have a burrow or safe hole to hide in. 

The possible actions are search-for-predator, forage, avoid-predator, and alarm; these actions 

were as follows (see Figure 3.7):

Search-for-predator: Spin in place to scan the environment, searching for predator-

colored blobs. If the predator is detected (i.e., a red blob above the threshold size), stay fixated 

on the predator and track the blob. Otherwise, continue scanning.

Forage: Spin in place to scan the environment, searching for food-colored blobs. If food 

is detected after one revolution (i.e., a green blob above threshold size), move toward the food. 

Otherwise, randomly move in a direction and scan again. When within a threshold distance of 

the food, stay there and “eat.”

Avoid-predator: If the predator is visible (i.e., a red blob above the threshold size has 

been detected), turn away so that the predator is not visible and move forward in that direction. 

Search for safe zones (i.e., yellow-orange blobs above threshold size) and approach these.

Alarm: Send an alarm message to all agents. Agents must be within 2.0 meters of the 

sender to be able to “hear” a message. In accordance with Seyfarth and Cheney's (2003) 

observations of biological organisms, alarm calls have the potential to be elicited by detecting a  
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predator, by fear level alone, or by the call of a conspecific.

Motivation for each action was calculated based on “fear” and “hunger” levels. Fear was a 

measure of endangerment to the prey's well-being and was a function of nearness to the 

predator and alarm calls from other prey. Hunger was a measure of the prey's energy deficit and 

was a function current energy levels, which in turn were incremented and decremented based 

on movement and amount “eaten.” Although the words “fear,” “hunger,” etc. are laden with 

emotional connotations, recall that I have defined emotion  such that it does not require the 

feeling of the emotion – emotion is just a complex pattern of response that prepares the agent to 

act in particular ways (see Section 2.1). These words best denote the kind of motivations 

interacting within the prey.

In all equations below, the sensitivity factors and exponents were evolved in the genetic 

algorithm.

Fear is an function of distance to predator and alarms, where kf is a constant that was 

also evolved, D is the distance to the predator, AN is the number of alarms detected, AI is the 

intensity of the alarms, and d and a are the evolved exponents. 

FEAR = kf + D-d + (An * Ai)a

Hunger is a function of energy levels, where kh is a constant that was also evolved, E is 

the current energy level, and n is an evolved exponent.

HUNGER = kh + E-n

Vigilance is a leaky integrator function, where k is a constant that was evolved, L is the 

rate of the leak, also evolved, t is time, and C is the input to the function.

VIGILANCE = kve(-Lt)+ C/L

Search-for-pred is a linear function of fear level and vigilance, where F is the current 

fear level, V is the vigilance factor, and ssf and ssv are sensitivity factors.
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SEARCH = ssfF + ssvV

Forage is a linear function of hunger, where H is the current hunger level and sfo is a 

sensitivity factor.

FORAGE = sfoH

Avoid-predator is a linear function of fear, where F is the current fear level, V is the 

vigilance factor, sav and sav are sensitivity factors, and k is a constant.

AVOID = savF + savV + kav

Alarm is a linear function of fear, where F is the current fear level, sal is a sensitivity 

factor, and k is a constant.

ALARM = salF + kal

3.2.9. Prey behavior – without emotions

The motivation for selecting any particular action was not modified by fear or vigilance  

values in the emotionless agent. As such, the agent had a reduced set of actions, containing only 

forage and avoid-predator because alarm served as an expression of affective state, and 

search-for-predator was in response to vigilance and fear alone. If the predator came within a 

threshold distance (1.0m) of the prey, the prey selected avoid-predator. Otherwise, the prey 

selected forage and sought out food.

3.2.10. Food

Twenty food patches were randomly distributed throughout the plane, color-coded green 

and each with a randomly picked starting number of energy units between 60 and 200. Food 

patches replenish at a constant rate of 4 energy units per timestep. When eaten by the prey, a 
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food patch's energy potential decreases at a rate of 10 energy units per timestep. The prey gets 

10 energy units per timestep from eating.

The prey's linear energy decay and restoration rates were based on graphs of energy 

expenditure in lions and gazelles (Elliott, Cowan, & Holling, 1977), which showed that 

different tissues are more expensive to maintain and some gaits require more energy 

expenditure. Each prey started with an energy of 800, which meant that unless it successfully 

foraged, it would die before the end of the trial.

3.2.11. Data Analysis

The lifespan in timesteps of each prey agent in each simulation was recorded, as well as 

the agent's motivations, energy, and action selected each timestep. Two-tailed t-tests were run in 

Excel to compare the fitness of prey with predators to prey without a predator, and to compare 

the fitness of prey with emotion to prey without emotion.

3.3. Results

Results from the second genetic algorithm are shown in Figures 3.2 through 3.4. Figure 

3.2 displays the average lifespan of prey agents in each generation, with a trend of increasing 

lifespan over time and a noticeable inflection point after ten generations. The evolution of each 

gene over time is shown in Figures 3.3a-3.3c; the same inflection point can be seen. The genes 

continued changing across all generations with the exception of the mutation rate, which maxed 

out, and the exponent modifying Energy in the Hunger equation, which leveled out as well. The 

genomes of best prey, calculated based on fitness and used for the emotion system vs. no 

emotion system comparisons, are shown in Figures 3.4a-3.4d. These demonstrate that despite 

average trends in genome change, the genomes of individual prey varied significantly and the 

genomes of successful prey did not necessarily follow the same trends.

The lifespans of the four best prey agents (Prey1, Prey2, Prey3, Prey4) with and without 

a predator are plotted in Figure 3.8. Two-tailed t-tests revealed that Prey3 and Prey4 had 

27



significantly longer lifespans in timesteps when no predator was present (Prey3 M = 510.225, 

SD = 176.3065; Prey4 M = 522.12, SD = 195.683) than when there was a predator (Prey3 M = 

160.475, SD = 147.312; Prey4 M = 395.55, SD = 200.935), Prey3 t(78) = 9.6279, p < 0.0001; 

Prey4 t(78) = 2.8541, p = 0.0055. Prey1 had a longer lifespan when no predator was present (M 

= 542.175, SD = 209.657) than when it was (M = 457.875, SD = 218.5438), but this difference 

was not quite significant, t(78) = 1.6706, p = 0.0988. Prey2 was anomalous: its lifespan was 

longer on average when the predator was present (M = 630.05, SD = 173.378) than when it was 

not (M = 517.8, SD = 208.704), t(78) = 2.6165, p = 0.0107. 

Figure 3.8 also shows the lifespans of the emotion prey and the emotionless prey. A 

two-tailed t-test revealed that the lifespans of Prey1 (M = 457.875, SD = 218.544) did not differ 

significantly from the prey without emotions (M = 526.025, SD = 240.617), t(78) = 1.3260, p = 

0.1887. Prey2's lifespan (M = 630.05, SD = 173.358) was significantly longer than that of the 

emotionless prey, t(78) = 2.2185, p = 0.0294. Prey3's lifespan (M = 160.475, SD = 147.312) 

was significantly shorter than that of the emotionless prey, t(78) = 8.1946, p < 0.0001, as was 

Prey4's (M = 395.55, SD = 200.935), t(78) = 2.6323, p = 0.0102. The average lifespan of the 

emotionless prey did not differ significantly in the presence of the predator versus not (M = 

552.20, SD = 208.48), t(78) = 0.5200, p = 0.6046, though the trend was in the expected 

direction.

3.4. Discussion

In this study, the primary goal was to determine whether having an emotion system was 

beneficial to a prey agent, extending its lifespan beyond what could be attained via a less 

adaptive action selection system. The results did not conclusively show that this was the case: 

in only one of four cases was the average lifespan of a prey with an emotion system 

significantly greater than that of a prey agent without an emotion system. Two of the others' 

average lifespans did not differ significantly from the emotionless prey, and the fourth had a 

lifespan significantly shorter. The control, in which prey agents with and without a predator 

were compared, was marginally more successful at verifying that the presence of a predator 
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significantly decreases a prey's lifespan, regardless of whether it had an emotion system or not. 

The emotionless prey had predictable behavior: it would forage for food until the 

predator came within a threshold distance (1m), and then it would avoid. It was frequently 

successful at escaping the predator and then continuing to forage, surviving entire trials by 

switching between these two actions. When it died, it was more often a failure to locate a food 

patch than a failure to escape the predator. During the predator-less trials, the emotionless prey 

only foraged, and any deaths were solely the result of “starvation.” The fact that many prey 

failed to locate food patches suggests that their forage algorithm could be improved. Similarly, 

because the predator in many cases failed to ever find the prey, the predator's seek-prey 

algorithm could also be improved. It would likely prove interesting to instantiate multiple  

different search strategies in the agents and to compare which strategies work better in relation 

to the agent's body, motivations and survival strategy, and environment.

Prey1's strategy was most similar to the emotionless prey's, and thus it makes sense that 

its average lifespan did not differ significantly from the emotionless prey's. It foraged near-

continuously, never selecting search-for-predator, and only selecting avoid when the predator 

came very close. It tended to be unsuccessful at avoiding, switching to the action when the 

predator was already too close (5-10 timesteps away), and dying as a result. When there was no 

predator, Prey1 had a longer lifespan on average, but not significantly so. This makes sense in 

light of Prey1's patterns of behavior: without the predator, Prey1 foraged and occasionally 

“starved” to death. With the predator, it occasionally got “eaten,” thus slightly increasing its  

average number of deaths.

Like Prey1, Prey2 only selected avoid when the predator came very close, and tended to 

be unsuccessful at avoiding, though there were a few isolated instances of successful escapes. 

Its primary strategy was to search more than forage when there was a predator; with no 

predator, Prey2 foraged near-continuously and lived for a shorter span on average. Searching 

uses slightly less energy than foraging on average because it involves less movement, so 

switching between searching and foraging instead of just foraging could lead to the 

conservation of more energy overall. In addition, search involves spinning in place to scan the 

environment for the predator, which could, in addition, lead to better detection of nearby food 

patches and thus allow the prey to forage more successfully.
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Prey3 also selected search more than forage, and its motivation to avoid was better 

tuned, allowing it to more frequently escape the predator. Indeed, in several instances, the 

predator chased Prey3 continuously for more than three hundred timesteps. Prey3 did not live 

as long as the emotionless prey on average, which was likely because it failed to start foraging 

soon enough to locate and approach a food patch. When there was no predator, Prey3 was much 

more likely to be able to forage successfully.

Similar to Prey3, Prey4 did not live as long as the emotionless prey on average. This 

was the result of both failing to start foraging soon enough and avoiding soon enough. When 

there was no predator, it foraged successfully more frequently.

Overall, more variation in average lifespan was seen when the predator was in the 

environment than when it was not, which was as expected. Without a predator, the task was 

very simple and there was just one optimum survival strategy: find food patches. With a 

predator, the prey evolved with the genetic algorithm developed very different strategies for 

survival compared both to each other and to the emotionless prey. There was no clear “best” 

strategy; having an emotion system was not demonstrably better than not. This could be in part 

due to the continued simplicity of the task and the environment. In other models of artificial  

agents with emotions, the tasks required of the agents have tended to be more complex: e.g., 

long-term foraging with a pair of robots (Miachaud & Audet, 2001), coordination of the serving 

of hor d'oeuvres (Murphy et al., 2002), navigation in an unknown environment (Hassaon & 

Gaussier, 2010; Lee-Johnson & Carnegie, 2007). Both O'Bryne et al. (2009) and Parisi and 

Petrosino (2010), whose simulated robots performed tasks fairly similar to this one, included 

more competing motivations: not only avoiding a predator and foraging to obtain energy, but 

also resting to heal physical damage, seeking “water” in addition to “food,” or “mating” with 

other robots to generate “offspring.” Indeed, simple biological organisms such as bacteria 

(Berg, 2000) and ants (Gordon, 2000), get along just fine with a simpler, emotionless 

architectures. Only more complex creatures that must perform comparably more complex tasks 

to survive have emotions – mammals, birds, fish (Chandroo et al., 2004; Panksepp, 1998; and 

Preston and de Waal, 2002).

Study Two investigates whether emotions are beneficial in more complex scenarios, 

specifically, when a prey agent acts as a member of a group. 
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4. Study Two

4.1. Overview

The goal of this study was to examine what it is that makes emotions beneficial to a 

prey agent. A genetic algorithm was used to evolve a group of prey with emotions to determine 

what kind of action selection and behavior would be beneficial in a group – specifically, 

whether alarm signaling would be utilized. This group of evolved prey was compared to a 

group of emotionless prey.

4.2. Methods

4.2.1. Simulations

The simulation environment, prey motivations and behavior, and predator behavior 

were the same as in Study One, with the following addendum: Instead of placing only a single 

prey in the simulation environment, a group of prey were used. The genomes of the four best 

emotion prey agents, as determined through the genetic algorithm in Study One, were each 

used to initialize five genomes in the first population for the multiple-prey genetic algorithm:  

two “clones” plus three copies randomly mutated a small amount. The best individuals from 

this population were selected and mutated to produce the subsequent generation, using the same 

genetic algorithm structure as was described in Section 3.2.4. Twenty prey were run per 

generation; each trial consisted of 720 timesteps of 250ms each for an overall trial time of three 

minutes. As detailed in Sections 3.2.7 and 3.2.8, at each timestep, the prey and the predator 

calculated which action they would each perform next, and each predator-prey group ran in its 

own simulation. This same genetic algorithm was run three times for fifteen, twenty-five, and 

twenty-two generations, respectively. Each time, evolution was halted because the genomes 

present had converged on a solution. Slightly different solutions were obtained each time. 

These results are discussed further in Section 4.3.

The five best individuals were determined based on longest average lifespan of the 
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individual in respect to its population and with respect to the population as a whole. From the 

first run of the genetic algorithm, the best agent used the final solution found; for the second 

two runs, the best agents had genomes very slightly different from the final average solution. 

To account for this, two agents from each of these runs were selected. Figures 4.3 and 4.4 

display these agents' genomes both in a table and visually. Each individual was cloned to create 

its own group of twenty agents; each of these groups was compared to a group of emotionless 

prey agents. In addition, a composite group formed by taking four copies of each of the best 

individuals was also compared.

4.2.2. Comparison with emotionless prey

To determine whether the emotion/motivation system was beneficial to prey acting in a 

group, twenty trials of 720 timesteps of 250ms each were run for each prey group – the five 

single genome groups, the one composite group, and the group of emotionless prey agents, 

using the emotionless prey described in Section 3.2.9. As before, the predator and prey agents 

were placed in an obstacle-free environment with their starting locations randomly determined. 

The predator could seek out the prey and attempt to attack; the prey could “eat” to maintain  

energy levels, move to observe the predator, send alarm signals, and move to avoid the prey, as 

described previously.

4.2.3. Data Analysis

The lifespan in timesteps of each prey agent in each simulation was recorded, as well as 

the agent's motivations, energy, and action selected each timestep. Two-tailed t-tests were run in 

Excel to compare the fitness of each emotion prey group to the emotionless prey group, and to 

compare the numbers of prey in each group that survived an entire trial.
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4.3. Results

Results from the three genetic algorithms are displayed in Figures 4.1 through 4.5. 

Figure 4.1 shows the average lifespan over time for each run, while Figure 4.2 displays genetic 

change over time. It is not obvious from the change in average lifespan that the solutions 

improved, but from the inflection points and the genetic changes, it is clear that the solutions 

found changed significantly from the starting genomes from Study One. In each case, the 

genomes present in the population converged on a solution, with slightly different solutions 

found each time (Figures 4.3 and 4.4). As before, the genomes of successful prey varied widely 

and did not necessarily follow the same trends. The genomes represent complex interactions 

among many variables and it can be difficult to tell simply by looking at gene values what the 

resultant phenotype may be.

The average lifespans of the prey groups with emotion (PreyG1, PreyG2, PreyG3, 

PreyG5), the composite group (PreyGC) containing copies of each of these five, and the prey 

group without emotion are plotted in Figure 4.5. Two-tailed t-tests revealed that PreyG1, 

PreyG2, and PreyG4 all had significantly longer average lifespans in timesteps (PreyG1: M = 

432.18, SD = 60.96; PreyG2:  M = 350.59, SD = 41.08; PreyG4:  M = 373.45, SD = 75.87) 

than the emotionless prey group (M = 319.26, SD = 36.15), PreyG1: t(38) = 7.1262, p < 

0.0001; PreyG2:  t(38) = 2.5606, p = 0.0145; PreyG4:  t(38) = 2.8834, p = 0.0064. PreyG3 had 

significantly shorter mean lifespans in timesteps (M = 218.76, SD = 44.76) than the 

emotionless prey group, t(38) = 7.8124, p < 0.0001. PreyG5's average lifespan in timesteps (M 

= 316.32, SD = 51.81) did not significantly differ from of the emotionless prey group, t(38) = 

0.2081, p = 0.8362; PreyGC also did not differ significantly (M = 337.54, SD = 46.08), t(38) = 

1.3953, p = 0.1710.

In support of these results, in all but one case significantly more prey per group survived 

for the entire trial when they had an emotion system (PreyG1: M = 2.80, SD = 1.61; PreyG2: M 

= 3.10, SD = 1.25; PreyG4: M = 3.55, SD = 1.96; PreyG5: M = 2.15, SD = 1.73; PreyGC: M = 

4.10, SD = 1.25) than when they did not (M = 1.9, SD = 0.85), PreyG1: t(38) = 2.2118, p = 

0.0331; PreyG2: t(38) = 3.5463, p = 0.0011; PreyG4: t(38) = 3.4555, p = 0.0014; PreyG5: t(38) 

= 2.9137, p = 0.0060; PreyGC: t(38) = 6.5087, p < 0.0001 . PreyG3 (M = 1.55, SD = 1.53) did 

33



not differ significantly from the emotionless prey group, t(38) = 0.9065, p = 0.3704. These 

means are displayed in Figure 4.6.

In light of the results of PreyG3, a two-tailed t-test was run to compare the lifespan of 

all prey from PreyG3 to all the prey with the same genome in PreyGC. The test revealed that 

the PreyG3 prey had shorter lifespans on average (M = 218.76, SD = 161.92). than the same 

genome in PreyGC (M = 260.75, SD = 190.77), but that this difference was not quite 

significant, t(458) = 1.8151, p = 0.0702.

4.4. Discussion

The purpose of this study was to determine whether having an emotion system would be 

beneficial when a prey agent acted as a member of group. The results suggest this is indeed the 

case: in all but one emotion prey group, more prey per trial survived on average than in the 

emotionless prey group. Additionally, three of the emotion prey groups survived significantly 

longer on average than the emotionless group. The fact that in a two cases, despite having a 

lower average lifespan than the emotionless prey, more prey survived per trial overall can be 

understood when one sees that in those cases, the tendency was for a few prey were picked off 

early, bringing the average down, with the remaining prey succeeding at living longer. These 

results stand in contrast to the previous study and suggest that in more complex scenarios – 

perhaps specifically when acting as a member of a group in a “social” environment – an 

emotion system becomes useful.

In terms of behavior, putting the prey agents in a group situation selected for prey that 

utilized the behavior of the other individuals in their environment – exactly as predicted. The 

emotionless prey group followed the same pattern of behavior as any single emotionless prey: 

they primarily foraged and avoided the predator when it came within a threshold distance. 

When they did not survive an entire trial, it was either because of 1) a failure to locate a food 

patch, 2) being caught by the predator, or 3) successfully avoided the predator, but being 

continuously chased, not allowing for a switch in behavior to foraging.

The prey with emotions displayed much more interesting behavior. The PreyG1 agents 
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primarily searched until their energy dropped below approximately 50 (depending the 

predator's proximity). When the predator was near, they would alarm, but rarely avoided. 

Alarms, however, tended to be contagious – after one alarm signal was sent, nearby prey that 

received it were motivated to alarm as well, creating a chain reaction. In the PreyG2 agents, the 

contagion was even more pronounced. PreyG2 agents defaulted to foraging rather than 

searching – in fact, none ever utilized the search action – but when the predator approached, 

they would first alarm and then avoid. Nearby agents would similarly both alarm and avoid. 

Figure 4.7 shows the pattern of action selection across all individuals in one trial, as an example 

of this kind of behavior.

The one anomaly here was PreyG3, which performed worse than every other group, 

particularly when compared to the emotionless group. Although it is plausible that the initial  

performance of the PreyG3 genome during the genetic algorithm runs was a fluke, allowing to 

be selected as one of the best prey, this is unlikely. PreyG3 agents were highly responsive to the 

fear of other agents, swiftly switching to avoid as alarm signals spread throughout the group. 

As a result, they tended to alarm and avoid continuously until their energy fell below about 170 

(depending on proximity to the predator). Because avoiding drains energy faster, these prey ran 

out of energy faster, and because they responded to alarms received so readily, they often failed 

to start foraging soon enough to find food patches. Figure 4.8 displays the pattern of action 

selection for one of the PreyG3 trials, as an example. When placed in a group with prey that did 

not alarm as readily (the composite PreyGC), prey with the PreyG3 genome performed better.

Alarm contagion was also seen in PreyG4 and PreyG5, but minimally – more often, 

receiving an alarm signal provoked an avoid response rather than an alarm. PreyG4 agents 

tended to search initially, switching to avoid or alarm in response to fear levels, and switching 

to forage after their energy levels fell below about 460. PreyG5 agents similarly searched 

initially, but switched to forage later, when their energy fell below about 290. In both groups, if 

there were no alarms and many prey were searching, when one (or more) prey alarmed, most if 

not all of the searching prey switched to avoid. Figure 4.9 shows an example.

The behavior of PreyGC was composite of all of the above. The presence of prey with 

the Prey3G genome led to the whole group being high-fear, with a great deal of alarm and 

avoid behavior. Alarms led to more avoiding than alarming overall. As a result, more prey 
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successfully avoided the predator and survived the entire trial; very few prey were caught after 

the first fifty timesteps.

These results unequivocally show that when acting in a group, the prey agents evolved 

to take advantage of the behavior of other prey. Specifically, emotional contagion via alarm 

signals provoked an increase in fear responses that, on average, increased the likelihood that 

prey agents would survive longer.
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5. General Discussion

The prey model developed here is both a starting point for designing architectures for 

intelligent robot behavior as well as a hypothesis about what drives the adaptability and 

flexibility of biological organisms – namely, emotion. The results reported support this 

hypothesis: artificial agents that have an emotion-like system behave more adaptively and tune 

their behavior to the particular environment in which they find themselves.

Study One suggested that in relatively simple scenarios, having an emotion system can 

lead to remarkably different solutions than what one might find in an emotionless architecture – 

some of which perform better than an emotionless agent, and others worse. In Study Two, I 

investigated whether an emotion system would be more beneficial when an agent was placed in 

a more complex group scenario. This study revealed that prey agents evolved from those in 

Study One began to utilize alarm signaling; emotional contagion of fear emerged as a result.  

More prey in these groups survived longer per trial than prey in the emotionless group, which 

confirmed my predictions that when an agent must select between mutually incompatible 

actions, such as foraging and fleeing from a predator, having an emotion system will aid in 

selecting advantageous actions, as was suggested by Tooby and Cosmides (2008). Additionally, 

it was only in the group scenario that alarm signaling became a useful action. This is in line 

with Bradbury and Vehrencamp (1998) and Seyfarth and Cheney (2003), who both noted that 

alarm signals are only found in social species, most likely because their production depends on 

the presence of potential recipients.

This is certainly not the first emotion model incorporated into a artificial agent, as was 

detailed in Section 2.3, but its contributions to this body of research are three-fold: First, it 

reaches farther than many of the models already developed. Instead of looking at predator-prey 

relations, emotion architectures, or communication between multiple agents in isolation, all  

three were merged to create a more realistic, challenging scenario. This demanded digging to 

the core of each domain to determine how best to capture enough relevant features about the 

phenomena being modeled, without making the model unnecessarily complex.

Second, this model is a new take on biologically-inspired artificial emotion systems, 
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drawing on key mechanisms that appear to be constitutive of emotional phenomena in 

biological organisms. As  Ziemke and Lowe (2009) argue, this kind of approach accounts much 

more for the whole organism than strongly representationalist approaches that amount to 

“shallow” modeling of affective states, and generally results in greater flexibility and scope in 

robot performance. The model validates the claim that an emotion-like system can be 

beneficial, particularly in uncertain scenarios when other agents are present and many variables 

need to be accounted for. The fact that the contagion of fear seen in Study Two emerged as a 

beneficial behavior suggests this model is on the right track. Emotional contagion of this kind is 

seen in many biological organisms, such as Sherman's (1977) observations of alarm signaling 

as a way of spreading fear and alertness in voles. De Waal (2008) notes that even birds display 

contagion responses: If a single bird in a flock is startled into flight, this fear can spread to the 

rest of flock, causing them all to take off at once. Emotional contagion tends to be an 

automatic, reflex-like response not requiring any understanding or conscious intention – a bet 

that reacting in a particular way will be beneficial. 

Third, following the lead of O'Bryne and Cañamero (2010), this model supports a 

broader look at action selection. As the results of PreyG3 in Study Two demonstrated, one 

cannot look at the action selection architecture of an agent in isolation. The context in which 

the agent finds itself – both in terms of the environment itself as well as in terms of the 

behavior of other agents present – can significantly change what kind of behavior the agent 

displays. Nor can one ignore that action selection is, at its core, a decision about trade-offs. 

Performing one action necessarily means the agent cannot be performing a different action. 

Emotion can help assess risk and opportunity cost in a fast, heuristic way. Contagion of fear 

responses, mentioned above, is an example of this.

It is worthwhile to recall that in Study Two, although more prey in emotion groups 

survived for the entire trial time, in only three of the six cases did the entire group have a longer 

average lifespan than the emotionless group. Perhaps, as discussed earlier, this is because the 

scenario was still relatively simple. The prey only needed to determine whether to forage or to 

deal with the predator – Parisi and Petrosino (2010) suggest adding a third competing 

motivation could make the benefits of emotion clearer, as in the hazardous three-resource 

problems described by O'Bryne et al. (2009) and O'Bryne and Cañamero (2010). It is also 
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possible that the prey evolved in Study Two were not, in fact, optimal solutions, instead the 

result of premature convergence (see Eiben & Smith, 2003). Adjusting the genetic algorithm 

further or improving both the predator's and the prey's seek-food strategies such that fewer prey 

would die of “starvation” and more prey that fall into local optima would be “eaten” by the 

predator could allow better solutions to evolve.

It also seems plausible that if the prey were given a simple “herd” behavior, in which 

the agents would attempt to stay near other prey agents as in a flock of birds or school of fish 

(for a classic simulation of this kind of behavior, see Reynolds, 1987), alarm signaling may 

become even more relevant to the prey and would in fact correlate with an increased average 

lifespan. In addition, the range over which an alarm could be perceived in this simulation was 

large in relation to the speed at which they traversed the space. It is likely that any given prey 

agent sometimes received alarm signals from distant prey that did not predict an immediate  

threat to the agent, thus selecting for prey that did not necessarily place as great weight on 

alarm signals. Reducing the range at which an alarm could be perceived could make alarm 

signals more immediately useful and could correlate with increased average lifespan. Similarly,  

Jim and Giles (2000) suggested that communication among agents helped more in partially 

observable environments – the environment in Study Two was a flat plain. It would prove 

interesting to see how alarm behavior among the prey changes in a different environment. Jim 

and Giles (2000) examined predator communication rather than prey communication, but is 

plausible that the same principles apply to any agents attempting to coordinate or inform one 

another's actions.

5.1. Future directions

There are many directions that this work could be taken. As mentioned earlier, several 

competing motivations may be necessary for an emotion system to be useful in a robot (Parisi 

& Petrosino, 2010; O'Bryne et al., 2009). It could be worthwhile to complexify the prey agents' 

tasks by add competing motivations beyond hunger and fear, such as a desire to mate with other 

prey agents and produce offspring. For that particular case, a new factor could be added to the 
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genetic algorithm during the evolution of prey agents in which the offspring for subsequent 

generations would based on which individuals succeeded at “mating” with each other. 

Relatedly, because emotions are inherently embedded in the flow of time, it could be promising 

to follow the lead of Morgado and Gasper (2008) and build a more dynamic emotion model 

that takes change of emotion over time into account. The “receptive field” of emotion abilities  

could be modified as well – O'Bryne et al. (2009) found that the hormone-like mechanism 

biasing their prey agent's action selection was only adaptive when linked to distal detection of 

the predator, not when just linked to proximal detection.

There is great potential for investigating the effects of the environment on prey group 

behavior. As previously mentioned, obstacles could be added to create a partially-observable 

environment. The food available to the prey could be varied – either in availability/scarcity, or  

in the kinds of food patches in the environment. E.g., multiple kinds of food, each providing a 

different amount of energy to the prey and perhaps also differing in ease of accessibility, as well 

as evolving the prey's foraging strategy over time, could produce interesting comparisons of 

different search strategies, as was previously mentioned. One could study resource density in 

relation to population size, or could examine the co-evolution of search and avoid strategies by 

evolving both the predator and the prey, building on past work by Nolfi and Floreano (1998).

Modifying the kind of alarm signal, such as using a visual alarm, in conjunction with 

evolving the predator or changing the environment could have interesting results. Endler (2000) 

noted that even small changes in lighting can influence how effectively coloring patterns can be 

detected. Relatedly, in animal societies alarm signals are produced primarily to warn kin – 

female voles stay quiet around non-kin (Sherman, 1977). It would be relatively simple to 

extend this model to include “kin” and “non-kin” tagging of prey in the prey group, as well as a 

relevant motivation for a “desire” to inform kin of danger. This would allow for the study of kin 

selection effects on behavior and signaling and may prompt a different pattern of alarm 

utilization to arise.

The complexity of signals could also be increased: prey could be required to 

discriminate information from multiple signals simultaneously. E.g., a second predator could be 

added with a corresponding alarm signal, or mating signals from other prey. This would lead to 

an interesting interplay with eavesdropping, the observation of signaling between others; the 
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predator may use observations of mating signaling between prey to locate them, or prey may 

use mating signaling between other prey to determine whether or not to court a particular prey. 

The degree of resolution on the receiving end of a signal could be varied as well, since sensory 

systems are not perfect and cannot extract or code all aspects of signals, and are dependent on 

the sensitivity range of organs and receptors (Endler, 2000). Or, following the lead of Floreano, 

Mitri, Magnenat, and Keller (2007), signaling and communication themselves can be evolved.

Because the goal is to develop more adaptive behavior in artificial agents, primarily 

robots, it could be worthwhile to base the simulated robots' energy depletion rates on battery 

decay rates and their energy restoration rates at food patches on battery charge rates. This 

would allow for an easy transition to real robots and would make the scenario more realistic. 

Moving into the real world would also emphasize the role of the agent's body, which many 

researchers argue is particularly important for adaptive behavior and learning (e.g., Johnson, 

2007; Pfeifer & Scheier, 1999). One might explore different kinds of bodies in relation to 

emotion and action selection systems, or evolve the agent's body over time.
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6. Conclusions

As artificial agents are used to solve an increasing number of problems, the world in 

which they operate grows steadily more complex and requires them to perform even more 

diverse tasks. To function successfully, these agents need to be able to adapt their behavior to 

many divergent scenarios in real-time. The inclusion of an emotion system in their behavior 

architectures is a critical step in the this direction.

The model I developed here incorporates several functionally important aspects of 

biological emotion into a prey agent's action selection mechanisms. Information about the 

prey's immediate environment via its direct sensory perceptions and information about past 

motivational states and encounters with the predator are dynamically integrated to inform the 

prey's future actions, allowing it to continuously adapt to an existence in an ever-changing 

world.
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Figures

Figure 3.1: The valid ranges for each gene in the prey's genome in Study 1. The initial genomes 

for the second run of the genetic algorithm was randomly generated in a normal distribution 

with the mean in the fourth column and a standard deviation of one.

The genes eaFear and edFear are the exponents in the fear equation in Section 3.2: a 

and d, respectively; kFear is kf in the same equation. EeHunger is the exponent n in the hunger 

equation; kHunger is kh. From the vigilance equation, kVig corresponds to kv and leakrate to L. 

The genes sfAlarm, sfAvoid, and sfSearch are the sensitivity factors modifying fear in the 

alarm, avoid, and search equations; svSearch and svAvoid are the sensitivity factors modifying 

vigilance in the search and avoid equations. The genes kAlarm, kAvoid are the constants kal and 

kav, respectively, and shForage is the sensitivity factor modifying hunger in the forage 

equation.
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GENE MIN VALUE MAX VALUE
eaFear 0 1000 0.500
edFear 0 1000 2.000
eeHunger 0 1000 0.800
kFear -1000 1000 0.000
kHunger -1000 1000 0.000
kVig -1000 1000 -0.760
leakrate -1000 1000 0.321
sfAlarm -1000 1000 1.000
sfAvoid -1000 1000 1.100
sfSearch -1000 1000 0.080
shForage -1000 1000 120.000
svSearch -1000 1000 0.200
kAlarm -1000 1000 0.010
kAvoid -1000 1000 0.035
svAvoid -1000 1000 0.190

MEAN (2nd run)



Figure 3.2: The average lifespan of the prey agents for each of the twenty-five generations of 

the second genetic algorithm in Study One.
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Figure 3.3a: The change in each gene across the twenty-five generations of the second genetic 

algorithm in Study 1. Each dot represents the average of that gene for that generation.
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Figure 3.3b: The change in each gene across the twenty-five generations of the second genetic 

algorithm in Study 1, continued.
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Figure 3.3c: The change in each gene across the twenty-five generations of the second genetic 

algorithm in Study 1, continued.
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Figure 3.4a: The genomes of the four best prey agents evolved in Study 1.

Figure 3.4b: The first eight genes in the genomes of the four best prey agents evolved in Study 

1, displayed visually and compared to the “seed” genome for this run of the genetic algorithm 

(see Figure 3.1).
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Figure 3.4c: A continuation of the genomes of the four best prey agents evolved in Study 1, 

displayed visually and compared to the “seed” genome for this run of the genetic algorithm (see 

Figure 3.1).

Figure 3.4d: The last gene in the genomes of the four best prey agents evolved in Study 1, 

displayed visually, compared to the “seed” genome for this run of the genetic algorithm.
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Figure 3.5: A screenshot of the simulation environment. The safe zone is the yellow square; the 

green squares are food patches. The predator was color-coded red, while each prey agent was 

blue.

55



Figure 3.6: Diagram of the predator's action-selection and behavior hierarchy.

Figure 3.7: Diagram of the prey's action-selection and behavior functions.
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Figure 3.8: The mean lifespans of the four best prey agents tested in Study 1 when a predator 

was present in the environment (blue) and when no predator was present (orange). 

Figure 4.1: The mean lifespan over time for each of the genetic algorithm runs in Study Two.
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Figure 4.2a: The genetic change over time for each of the genetic algorithm runs in Study Two.
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Figure 4.2b: The genetic change over time for each of the genetic algorithm runs in Study Two.
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Figure 4.2c: The genetic change over time for each of the genetic algorithm runs in Study Two.
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Figure 4.3: A table of the genomes of the five best prey agents in Study Two, used for the 

emotion prey group versus emotionless prey group comparisons.

Figure 4.4a: The first eight genes in the genomes of the five best prey agents in Study Two, 

displayed visually.
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GENE PreyG1 PreyG2 PreyG3 PreyG4 PreyG5
eaFear 0.6260 1.5224 1.5214 0.2420 0.2397
edFear 1.9154 0.8955 0.8611 1.4687 1.4307
eeHunger 1.0527 0.6593 0.6820 0.4292 0.4298
kFear 0.0128 0.0471 0.0476 0.2201 0.1790
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kVig 0.4729 -0.5121 -0.4922 -1.8994 -1.9097
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sfAlarm 1.2475 0.6875 0.6536 -0.2907 -0.2948
sfAvoid 1.0749 0.7867 0.7935 0.8590 0.7988
sfSearch 1.3620 0.5335 0.5394 0.5378 0.5845
shForage 119.5102 120.0225 120.0506 120.1009 120.1508
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kAlarm 0.3551 1.0476 1.0221 0.3164 0.2810
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Figure 4.4b: A continuation of the genomes of the five best prey agents in Study Two, 

displayed visually.

Figure 4.4c: The last gene in the genomes of the five best pre agents in Study Two, displayed 

visually.
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Figure 4.5: The mean lifespans of the five emotion prey tested, of the composite group 

containing copies of each of these five, and of the emotionless group.
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Figure 4.6: The mean number of prey per group that survived for the entire trial for each prey 

group tested.
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Figure 4.7: This graph shows the pattern of action selection over time across all the individuals 

in one of the PreyG2 trials. Alarms were contagious for the PreyG2 agents and provoked fear 

responses (alarming and avoiding) throughout the group. Search was not utilized by these 

agents.

Figure 4.8: This graph shows the pattern of action selection over time across all individuals in 

one of the PreyG3 trials. Fear was highly contagious and again, these agents did not use search.
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Figure 4.9: This graph shows the pattern of action selection over time across all individuals in 

one of the PreyG5 trials. Alarms tended to provoke avoid behavior rather than further alarms.
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